FOX Module Reference

PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information.
PDF generated at: Wed, 06 Feb 2013 15:50:06 GMT

FOX:Module:MODULE REFERENCE

FOX:Module: MODULE REFERENCE

¢ fm:action-list

¢ fm:action

* fm:api

* fm:application-title

e fm:attr

¢ fm:authentication

e fm:build-notes

* fm:cache-key

¢ fm:comments

e fm:control

e fm:css-list

e fm:css

e fm:current-of-item

* fm:data-mapping

* fm:data-type

¢ fm:database

¢ fm:db-interface-list

¢ fm:db-interface

e fm:delete

* fm:description

* fm:display-attr-list

¢ fm:documentation

* fm:entry-theme-list

e fm:entry-theme

» fm:file-storage-location
¢ fm:for-each-fetch

* fm:header

e fm:help-text

* fm:history

e fm:insert

¢ fm:into

* fm:key

* fm:library-list

* fm:library

¢ fm:lock

¢ fm:map-path

* fm:map-set-list

¢ fm:map-set

e fm:matrix-and

¢ fm:matrix-author

¢ fm:matrix-container-record-number
¢ fm:matrix-date-closed
* fm:matrix-date-created
* fm:matrix-date-registered

¢ fm:matrix-external-reference

FOX:Module:MODULE REFERENCE

* fm:matrix-into

e fm:matrix-notes

e fm:matrix-order-by

e fm:matrix-or

* fm:matrix-record-number
e fm:matrix-record-title

* fm:matrix-record-type

e fm:matrix-search

* fm:mode-rule

e fm:module

* fm:name-space-list

* fm:name-space

e fm:name

* fm:new-document

* fm:page-size

» fm:pagination-definition-list
* fm:pagination-definition
* fm:param-list

* fm:parameter-list

* fm:parameter

e fm:param

* fm:post-page

* fm:pre-condition

* fm:pre-page

* fm:presentation

e fm:primary

e fm:query

* fm:refresh-in-background
* fm:refresh-timeout-mins
e fm:return-list

e fm:return

* fm:root-element

* fm:row-lock

e fm:schema

* fm:security-list

* fm:security-rule

* fm:select

* fm:set-buffer

* fm:set-page

* fm:show-popup

e fm:sql

* fm:state-list

* fm:statement

* fm:state

* fm:storage-location-list
* fm:storage-location

* fm:table

FOX:Module:MODULE REFERENCE

* fm:target-path

* fm:template-list
* fm:template

* fm:title

* fm:update

* fm:using

* fm:version-desc
* fm:version-no

* fm:view-rule

e fm:xml-commit

FOX:Module:action

fm:action

Description
<fm:action name="String" [any-namespace:prompt="XPath String" any-namespace:run="XPath Boolean" any-namespace:ro="XPath Boolean" ...] >
<fm:do>
[command 1list]
</fm:do>

</fm:action>

Define an action. Commands in command list are executed from top to bottom. See here for a list of possible
commands. Commands which could possibly displace the current module from the top of callstack (i.e. state-pop,

call-module) must be last in the Command list.

To call an action by name use fm:call. To call an action as a callback action for a module call, set it as the
callback-action on the fm:call-module command. You can also assign fox:action and fox:change-action attributes to

schema elements.

Actions can be defined at module level or state level. State level actions are accesible at module level, and from

different states, by prefixing the action name with the state name, e.g.

<fm:call action="state—-name/action-name">

Display an action on the page using menu-out or action-out.

Optional Attribute Description

» fox:actionStyle - CSS style element.

» fox:actionClass - CSS class element.

* fox:confirm - Text of a Javascript confirm dialog which appears when the user clicks the widget.

* any-namespace:displayOrder - Display order as used by menu-out.

» stub-overload - If the Xpath evaluates to true, any libraried in fm:actions with the same name will replace this

one.

http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Reference%23Command_Reference
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Command:call
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Command:call-module
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Schema:action
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Schema:change-action
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:XHTML:menu-out
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:XHTML:action-out

FOX:Module:action

Auto actions

Auto actions are special actions which run implicitly at certain predefined points during FOX processing. An auto
action can be defined just like a normal action, but named with a special prefix. These prefixes are as follows:

e auto-action-init

* auto-action-final

* auto-state-init

e auto-state-final

¢ auto-callback-init

* auto-callback-final
Examples of acceptable auto action names:
auto—-action-init
auto-action-init-my-auto-action
Auto-action actions are run before (init) and after (final) any action which has caused the page to post.

Auto-state actions are fired as the state in which they are defined is pushed to (init) or popped from (final). If they
are defined at module level, they run when the module is called (before the entry-theme do block) and when it is

exited.
Auto-callback actions are run before (init) and after (final) a callback action.
The auto actions fire in the following order:

. auto-callback-init
. auto-action-init

. auto-state-init

. auto-state-final

1
2
3
4. the action you're calling (i.e. fm:call, or a page link/button click)
5
6. auto-action-final

7

. auto-callback-final

Note: auto-state-final actions do not appear to fire on an exit-module.

Notes

To use an XPath String as the prompt for an action, you must define the any-namespace:[roledit] attribute in

addition to any-namespace:run.

Related
¢ fm:action-list
¢ fm:do

¢ fm:documentation

http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:do

FOX:Module:action-list

FOX:Module:action-list

Description

Element for containing multiple fm:action elements. This can be specified at module level, or as a part of an

fm:state.

Examples

Module level

<fm:module>
<fm:action-list>

<fm:action name="action-example-1"/>

<fm:action name="action-example-2"/>

</fm:action-list>

</fm:module>

State level

<fm:state>
<fm:action-list>
<fm:action name="action-example-1"/>

<fm:action name="action-example-2"/>

</fm:action-list>

</fm:state>

Notes

The existence of this element is mutually exclusive to the element which contains it.

Related

¢ fm:module
¢ fm:action

¢ fm:state

http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:state
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:state

FOX:Module:api

FOX:Module:api

Description

The fm:api command specifies the API block within an fm:db-interface. When creating a fm:db-interface, you can

mix and match both fim:query and fm:api blocks, but the 'fm:query ones must be declared before the fm:api' ones.

Jm:api blocks can be called in a similar way to fim:query blocks, by using the fm:run-api command in an fin:do
block.

The fm:using child element has optional attributes and can contain an XPath. It can be used in the same way as an

Jm:query using clause, but it is possible to specify the direction and type of a bind variable.

When specifying a datadom-type, it is customary to use a datadom-location to match an XPath, rather than include
an XPath expression as a text node within the fim:using tag elements. The datadom-type specifies the type of data
coming from or going to the location targeted by the XPath expression and the sql-type specifies a value similar to

that of Oracle’s own datatypes to dictate how Oracle should treat it.

Under most circumstances, FOX should guess the datatypes, but occasionally it is necessary to override this.

Syntax

<fm:api name="api name">
<fm:statement>
PL/SQL or DML statements go here
</fm:statement>
<fm:using
[name="name of bind variable"]
[direction="in|out |in out"]
[datadom-type="date|datetime|dom|string|time"]
[datadom-location="XPath expression of local value to bind"]
[sgl-type="clob|date|varchar|xmltype"]>
XPath Expression (If datadom-location doesn’t exist)
</fm:using>

</fm:api>

Examples
The fm:statement in the fm:api can either contain anonymous PL/SQL or DML. As a PL/SQL block with bind

variables, it can look as follows:

<fm:api name="api name">

<fm:statement>

DECLARE
1_mynum NUMBER (4) := :num;
1_mystr VARCHAR2 (30) := :str;

1 _myxml XMLTYPE;

BEGIN

SELECT
XMLELEMENT ("MY_DATA"

http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:run-api
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:do

FOX:Module:api

, XMLELEMENT ("MY_STRING", 1_myStr)
, XMLELEMENT ("MY_NUM", 1_myNum)
)
INTO 1_myxml
FROM dual;

:xml_out := 1_myxml;

END;
</fm:statement>
<fm:using name=":num">/*/SOME_NUMBER</fm:using>
<fm:using name=":str" direction="in" datadom-type="string"
datadom-location="/*/SOME_STRING" sgl-type="varchar" />
<fm:using name=":xml_out" direction="out" datadom-type="dom"
datadom-location="/*/SOME_XML" sqgl-type="xmltype" />

</fm:api>

The above code will take a Number and String from the Data DOM, binding it to the PL/SQL. The PL/SQL will do
some processing, in this case it will generate an XML structure based on the two bind variables, and then it will bind
the result outwards to a location in the Data DOM as XML.

The first and second fm:using statements show the different syntax that can be used. For the first fm:using statement,
only one attribute is set and the XPath is specified as a text node, however for the second statement, everything is

specified, overriding FOX’s own guess.

A fm:api using a DML statement might look like this:

<fm:api name="api name">
<fm:statement>
UPDATE trainingmgr.department d
SET d.location = 'London'
WHERE d.id = :dept_id
</fm:statement>
<fm:using name=":dept_id">ID</fm:using>

</fm:api>
NB: DML statements are not auto committed by the fim:api, you need to manually commit any changes using

<fm:transaction operation="COMMIT"/>

It should also be noted that the value of 'operation’ is case-sensitive.

FOX:Module:api

Notes

Never issue a manual PL/SQL COMMIT statement inside an fm:api command, and remember to check that any
PL/SQL functions or procedures referenced do not contain any COMMIT statements. All of the code run inside an
fm:api should be transaction-safe, so that if a subsequent error occurs the entire workload can be rolled back. This

way, the database state is preserved; either everything succeeds, or nothing is changed.

Related

e fm:query

* fm:db-interface
e fm:run-api

* fm:using

¢ fm:statement

FOX:Module:application-title

Description

Jm:application-title is part of fi:header and allows for setting out text which describes application of which your
module is part of. The text entered is populated as part of the :{sys} DOM under the heading application-title. This in
turn is extracted by the LAYOUTILIB library module, added to a buffer and included as part of your module's html
markup.

Syntax

<fm:header>
<fm:application-title> (Application title text)</fm:application-title>

</fm:header>

Examples

Given this as the state of the module.

<fm:header>

<fm:application-title>My Application</fm:application-title>

</fm:header>

This would be the result in :{sys} when accessing that module.

<module>

<application-title>My Application</application-title>

</module>

This in turn would show on screen as a header with the text contents of fm:applicaton-title through
'LAYOUTILIB'"s formatting

Which is effectively doing this:

http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:run-api

FOX:Module:application-title

<fm:set-buffer name="buffer-titlel">
<fm:expr-out match=":{sys}/module/application-title/text ()"/>
</fm:set-buffer>

This buffer is then included in an appropriate part of the page.

Notes

LAYOUTILIB Is a formatting library, therefore may be subject to change (or not used at all in your module).

Related

¢ fm:header

FOX:Module:attr

Description

Jm:attr is a child element of fm:display-attr-list. This element targets markup/display attributes on elements &
set-outs and assigns a default value to be used. The default cascades through the libaried in modules that contribute
to the presentation buffers. (i.e. if I set the default of prompt, all elements capable of using prompt will be set to the

value provided by fm:attr.
Display attributes have an overriding hierarchy similar is functionality to CSS attributes and follows the list below:

* xs:element schema level is highest
o fm:set-out/fm:menu-out and associated markup is overridden by schema level

e fm:attr is overridden by fm:set-out (etc)

Syntax

<fm:attr name="[Name of attribute]>[State of attribute]</fm:attr>

Attribute Summary

Attribute Data Type Description Required
name Valid display attribute | The name of a display attribute of which to set the default safe of. | Yes
Examples

<fm:attr name="prompt">ChangeMe</fm:attr>

The above code will act as a default for any elements which do not have their prompt attribute set when being

displayed.

FOX:Module:attr

10

Related

* fm:display-attr-list

FOX:Module:authentication

Description

Jfm:authentication is a child element of fm:control and controls whether or not to allow users onto the module.
Given the fim:authentication state of not-required, any user is allowed onto a module. However, given required for

a user to access the module they would need to be logged in and hold the correct permissions for access.

Syntax

<fm:control>
<fm:authentication>|[required | not-required]</fm:authentication>

</fm:control>

Examples

Users are required to be logged in with the correct permissions for access.
<fm:authentication>required</fm:authentication>
Users can access the module freely without need to log in.

<fm:authentication>not-required</fm:authentication>

Notes

Generally most modules are in the fim:authentication state of required as doing so allows for more control over
what a user can and cannot do on the system. Exceptions to this would be login/registration modules and help

screens.

Related

¢ fm:control

FOX:Module:build-notes

11

FOX:Module:build-notes

Description

Jm:build-notes is a child of fm:header. 1t is used to store notes related to release/testing the module.

Syntax

<fm:header>

<fm:build-notes>[Build Notes]</fm:build-notes>

</fm:header>

Examples

<fm:build-notes>Must have datapatch0001.sgl applied before testing</fm:build-notes>

Notes

Deprecated, typicaly this information is now handled by an external release tool.

Related

¢ fm:header

FOX:Module:cache-key

Description

Jm:cache-key is an internal memory locator used as part of fin:storage-location. This provides the fox engine with a
unique key in which to cache the contents of :{root} for faster updates to the database. Typically the cache-key is
unique and generated upon each call of the module (achieved through using-types), however there are certain
scenarios where by you may want to read from a cached storage-location from multiple instances of a module

(mapsets), in this case a non-unique key can be used to allow multiple instances access to the mapset cache.

Syntax

<fm:cache-key string="module name :bind">
<fm:using [using-type="(using type)"]>bind xpath</fm:using>

</fm:cache-key>

Attribute Summary

Attribute | Data Type Description Required

string Xs:string Key used to identify storage location cache, can use numbered bind such as :1 corresponding to the first Yes

Jm:using bind type.

FOX:Module:cache-key

12

Examples

Typical unique cache key.

<fm:cache-key string="MY_ MODULE:1">
<fm:using using-type="UNIQUE"/>

</fm:cache-key>

Typical non-unique cache key

<fm:cache-key string="MY MODULE:1">
<fm:using>: {params}/ID</USING>

</fm:cache-key>

Notes

Only a finite amount of storage locations can be in memory at any one time (around 50-200 depending on the
instance of FOX engine that's being used) each of these has a time to live (TTL) from last use (around 15-60 minutes
again depending on environment). Once the TTL expires the storage location get's removed from memory and
recreated when necessary, this can be forced via the use of bang command /PURGE

Related

* fm:storage-location

e fm:using

FOX:Module:comments

Description

Jm:comments is a child element of fm:documentation and is used for storing text comments relevant to developers.

Syntax

<fm:comments>[Comment]</fm:comments>

Examples

<fm:comments>Only used there is list in param DOM.</fm:comments>

Related

¢ fm:documentaion

FOX:Module:control

13

FOX:Module:control

Description
Jm:control is a container element for FOX commands related to controlling module behavior in the FOX engine.

Jfm:authentication is the only section of fm:control that has much use in the current version of the fox engine. All
other commands are here for syntactical reference and are ignored by the FOX engine. Additional commands may be

added to this section in future releases of FOX.

e fm:authentication Defines whether authentication is needed for this module.
» fm:transaction-mode Deprecated, FOX Engine will ignore.

* fm:transaction-mode-new Deprecated, FOX Engine will ignore.

» fm:transaction-commit Deprecated, FOX Engine will ignore.

o fm:transaction-procedural-state Deprecated, FOX Engine will ignore.

» fm:xml-commit Deprecated, FOX Engine will ignore.

Syntax

<fm:module>
<fm:control>

<fm:authentication>[Authentication Mode]</fm:authentication>
<fm:transaction-mode>[Transaction Mode]</fm:transaction-mode>
<fm:transaction-mode-new>|[Transaction Mode]</fm:transaction-mode-new>
<fm:transaction-commit>[Transaction Commit Mode]</fm:transaction-commit>
<fm:transaction-procedural-state>[Transaction Procedural State Mode]</fm:transaction-procedural-state>
<fm:xml-commit>[XML Commit Mode]</fm:xml-commit>

</fm:control>

</fm:module>

Notes

The deprecated commands listed here will cause no effect on any FOX module.

Related

¢ fm:authentication

¢ fm:transaction-mode

¢ fm:transaction-mode-new

¢ fm:transaction-commit

» fm:transaction-procedural-state

e fm:xml-commit

http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:authentication
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:transaction-mode
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:transaction-mode-new
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:transaction-commit
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:transaction-procedural-state
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:xml-commit
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:authentication
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:transaction-mode
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:transaction-mode-new
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:transaction-commit
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:transaction-procedural-state
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:xml-commit

FOX:Module:css

14

FOX:Module:css

Description

Jm:css is a child element of fm:css-list and provides functionality to link CSS into the html which FOX generates.
The style sheets need to be defined as a record in envmgr.fox_components or the relative app-mnemonics
component table, with a type of text/css. The text specified as the contents of fm:css is linked directly to the name of
a text/css type component from the modules component table.

Syntax

<fm:css>[Name of CSS from FOX Components table]</fm:css>

Examples

<fm:css>css/myStyleSheet</fm:css>

The above example shows a valid style sheet include into the module, below show that same style sheet being

recalled from the database.

SELECT
name
» type
FROM envmgr.fox_components
WHERE type = 'text/css'
AND name = 'css/myStyleSheet'

More often that not, fin:css should only be used for library modules that are specifying the style for your whole
application area. An example of this would to create a wrapper for LAYOUT1 specify any custom css code, then to
library in the wrapper instead of LAYOUT. This is a commonly used design practice employed in most application

areas.

Jm:css is only processed for the module at the TOP of the mod merge, meaning that if you specify a fm:css-list tag,
you must specify all CSS locations that you want your module (and those which library in your module) to use.
Additionally, to override CSS already listed in the fox_components table, creating and using a different
app-mnemonic and storing the new style sheet there would be a better solution to copying in contents of the old CSS

file under a different location.

Related

e fm:css-list
* fm:presentation

* fm:library

FOX:Module:css-list

15

FOX:Module:css-list

Description

fme:css-list is a module level container for fim:css elements.

Syntax

<fm:css-1list>
<fm:css>...</fm:css>

</fm:css-list>

Related

¢ fm:module

¢ fm:css

FOX:Module:current-of-item

Description

Jm:current-of-item is a child element of fm:row-lock this feature has been deprecated and is now ignored by the
FOX engine.

Related

¢ fm:row-lock

FOX:Module:data-mapping

16

FOX:Module:data-mapping

Description

Jfm:data-mapping is a deprecated feature of fim:parameter

Syntax

<fm:data-mapping>...</fm:data-mapping>

Related

* fm:parameter

FOX:Module:data-type

Description

Jm:data-type is a deprecated feature of fm:parameter

Syntax

<fm:data-type>...</fm:data-type>

Related

* fm:parameter

FOX:Module:database 17

FOX:Module:database

Description

Jfm:database is a database connector for storage locations which allows for the reading/writing/creating of a database

record containing the :{root} DOM through PL/SQL, similar in functionality to fm:api and fm:query.
Jm:query DML for selecting & locking row containing XMLType/LOB data for use as initialising :{root} to.
Jm:lock Deprecated/Ignored element, lock row using FOR UPDATE in select statement.

Jm:insert DML for creating a record should fim:query not return a usable result.

Jm:update DML triggered upon updating contents of the :froot} DOM. Does not need to include a bind to update

LOB column as this is handles automatically via the LOB Locator.

Jfm:delete Markup specific to fm:file-storage-location, describes a DML statement to be executed upon the removal

of the widget which links to this specific fm.file-storage-location

Syntax

<fm:database>
<fm:query>
<fm:sql>
SQL statement with :bind
</fm:sql>
<fm:using>bind xpath</fm:using>
</fm:query>
<fm:lock>
Deprecated
</fm:lock>
<fm:insert>
<fm:sql>
DML statement with :bind
</fm:sql>
<fm:using>bind xpath</fm:using>
</fm:insert>
<fm:update>
<fm:sql>
DML statement with :bind
</fm:sql>
<fm:using>bind xpath</fm:using>
</fm:update>

</fm:database>

Jfm:file-storage-location has a specific markup element set apart from the shared markup between

Jfm:storage-location

<fm:database>
<fm:delete>
<fm:sql>

[DML statement with :bind]

FOX:Module:database

18

</fm:sql>
</fm:delete>

</fm:database>

Examples
Majority of information is the following examples are snippets from fm:storage-location

<fm:database>
<fm:query>
<fm:sql>
SELECT xml_data FROM portal_folders WHERE id = :1
FOR UPDATE OF xml_data NOWAIT
</fm:sql>
<fm:using>: {params}/P_PF_ID</fm:using>
</fm:query>
<fm:insert>
<fm:sqgl>
INSERT INTO portal_folders(
id
xml_data)
VALUES (
3l
:2)
</fm:sql>
<fm:using>: {params}/P_PF_ID</fm:using>
<fm:using using-type="DATA-XMLTYPE"/>
</fm:insert>
<fm:update>
<fm:sqgl>
UPDATE portal_ folders SET id = id WHERE id = :1
</fm:sql>
<fm:using>: {params}/P_PF_ID</fm:using>
</fm:update>

</fm:database>

Jm:query Attempts to select back a single row containing an XMLType which to initialise :{root} to.
Failing that, :{root} is initialized to the values discussed as part of fm:new-document, after which fm:insert is run.
Jm:insert will insert a row into the database with the using binds defined, for :{root} to be stored you must bind the

using-type "DATA-XMLTYPE".

Jm:update is run once per page churn whenever changes to :{root} arise, this is used mainly for kicking off database
triggers which will not work on LOB based data changes (such as for XVIEWs)

In addition to the shared syntax shown above, fm:delete is used exclusively as part of fm:file-storage-location for
removing file records from tables.

<fm:database>

<fm:delete>

<fm:sql>
DELETE FROM table_name

FOX:Module:database

19

WHERE id = :1

</fm:sql>
<fm:using>: {theme}/WIDGET_NAME/file-id</fm:using>

</fm:delete>

</fm:database>

Related

* fm:storage-location

* fm:file-storage-location
* fm:query

e fm:lock

e fm:update

e fm:insert

* fm:delete

e fm:sql

FOX:Module:db-interface

Description

Jm:db-interface provides SQL and PL/SQL functionality from within a fox module, including features designed for
integrating XMLType data into a DOM. This element contains 2 key components of a FOX module functionality

* Ability to Insert/Update/Delete data from database in a transaction safe way and Selecting results back into the
FOX module.

* Ability to call stored functions and procedures, especially important for any workflow (Buisness Process) related
functionality (Almost every FOX Project has made use of this).

These features are achieved by the following FOX markup.

» fm:table Defines processing rules for table updates, inserts and deletes, this is rarely used - kept in for legacy
reasons.

» fm:query Returns results of an SQL query into a specified DOM.

» fm:api Anonymous PL/SQL block OR DML statement, used for any database interaction that is not purely

querying out data.

Syntax

<fm:db-interface>
<fm:table>[TABLE Locking]</fm:table>
<fm:query>[SELECT Statenent]</fm:query>
<fm:api>PL/SQL or DML Statement</fm:api>

</fm:db-interface>

FOX:Module:db-interface

20

Examples

<fm:db-interface name="dbint-product">
<fm:loc
<fm:query name="gry-product">
<fm:select>
SELECT
product_name
, product_desc
, product_price
FROM productgmr.products
WHERE product_id = :product_id
</fm:select>
<fm:using name=":product_id">: {params}/PRODUCT_ID/text () </fm:using>
</fm:query>
<fm:api name="api-update-description">
<fm:statement>
BEGIN

UPDATE productmgr.produtcs

SET product_desc = :product_desc
WHERE product_id = :product_id
END;

</fm:statement>

<fm:using name=":product_id">: {params}/PRODUCT_ID/text () </fm:using>

<fm:using name=":product_desc">: {theme}/PRODUCT/PRODUCT_DESC/text () </fm:using>
</fm:api>

</fm:db-interface>

Notes

Jm:db-interface defines database interactions but will not run them, to cause a query or statement to be processed a
Command has to be used inside a fm:do block. Each child of fm:db-interface has it's own Command, these are
Jm:run-api, fm:run-query and fm:run-dml, you can find out more about these Commands from the child element

each is related too.

Related

¢ fm:db-interface-list
¢ fm:table
* fm:query

e fm:api

FOX:Module:db-interface-list

FOX:Module:db-interface-list

Description

Jm:db-interface-list is child of fim:module and a container for repeating fim:db-interface elements.

Syntax

<fm:module>
<fm:db-interface-list>

<fm:db-interface/>

</fm:db-interface-list>

</fm:module>

Related

¢ fm:module

¢ fm:db-interface

FOX:Module:delete

Description

Jm:delete is a child element of fm:database only valid when also a decendant of fm:file-storage-location. It contains
DML which will trigger once the XML node the file-storage-location is using has been removed. Removing a file
upload node will trigger fm:delete, allowing the file associated to said node before removed from the database if

required.

Generally considered bad practice to use this command, keeping the uploads is preferred.

Syntax

<fm:delete>
<fm:sql>
[DELETE DML]
</fm:sql>
<fm:using>WIDGET_XPATH</fm:using>
</fm:delete>

Examples

<fm:delete>
<fm:sql>
DELETE FROM table_name
WHERE id = :1
</fm:sql>
<fm:using>: {theme}/WIDGET_NAME/file-id</fm:using>
</fm:delete>

FOX:Module:delete

22

Related

¢ fm:database

* fm:file-storage-location

FOX:Module:description

Description

Jm:description is a child of fm:header. 1t is used to store a text description of the module, used by application
developers to identify the modules purpose.

Syntax

<fm:header>

<fm:description>| Description of module]</fm:description>

</fm:header>

Examples

<fm:description>Provide the searching functionality of the Product Search Application</fm:description>

Related

¢ fm:header

FOX:Module:display-attr-list

23

FOX:Module:display-attr-list

Description

Jm:display-attr-list is a child element of fim:presentation and contains repeating fm:attr elements. These provide

defaults for unset attributes which cascade throughout all modules libraried into the current module.

Syntax

<fm:display-attr-list>

<fm:attr name="[Attribute name]">[Atribute State]</fm:attr>

</fm:display-attr-list>

Related

* fm:presentation

e fm:attr

FOX:Module:documentation

Description

Jm:documentation contain useful developer information about the parent element under which this is located.

Syntax

<fm:documentation>
<fm:comments>[Comment]</fm:comments>
<fm:description>| Description]</fm:description>
<fm:pre-condition>[Pre-Condition]</fm:pre-condition>
<fm:parameter—-list>*[Paramters ...]</fm:parameter-list>
<fm:name-space-list>*[Name spaces]<fm:name-space-list>

</fm:documentation>

Examples

<fm:documentation>
<fm:comments>This module is using data from a legacy application</fm:comments>
<fm:description>Product Searching</fm:description>
<fm:pre-condition>Parameter IN_LIST must contain an element to search from</fm:pre-condition>

</fm:documentation>

FOX:Module:documentation

24

Notes

Generally unused, other elements and comments typically convey information well enough.

o fm:parameter-list is only applicable when fm:documentation is a descendant of fm:entry-theme
» fm:name-space-list is only applicable when fin:documentation is a descendant of fm:header

Related

* fm:header

e fm:action

* fm:comments

e fm:description

* fm:pre-condition
* fm:parameter-list

* fm:name-space-list

FOX:Module:entry-theme

fm:entry-theme

Description

<fm:entry-theme name="String" [authentication-type="..." published="..." type="...

<fm:storage-location>...</fm:storage-location>
<fm:state>...</fm:state>
<fm:attach>XPath</fm:attach>
<fm:do>

[command list]
</fm:do>

</fm:entry-theme>

Defines an entry-theme, which acts as an entry point into the module.

* <fm:storage-location> - The Data DOM Storage Location

* <fm:state> - The initial module state when the entry theme is used

* <fm:attach> - The initial attach point. The XPath expression is run relative to the <fin:root-element> in the

specified storage-location

* <fm:do> - List of FOX commands run when the entry theme is used.

Attribute Summary

FOX:Module:entry-theme

25

Attribute Data Type Description Required
name String Specifies the name of the entry-theme. This will be used when calling modules with Yes
Literal fm:call-module
type String ¢ internal - calling the entry theme directly (via url) is not allowed No
Literal ¢ external - can call the entry theme directly (via url)
e service-rpc - used for web services
* service-document - used for web services
authentication-type | String e portal - uses the cookie set by logging into the portal to authenticate the user No
Literal * http - uses http authentication to authenticate the user

Notes

See fm:param for detailed instruction on FOX Web services and implementation by fm:entry-theme

Related

fm:entry-theme-list

fm:storage-location

fm:state
fm:attach
fm:do

FOX:Module:entry-theme-list

Description

Container element for multiple fin:entry-theme elements.

Syntax

<fm:module>

<fm:entry—-theme-list>

<fm:entry-theme name="new">

<fm:entry-theme>

</fm:entry-theme-list>

</fm:module>

http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:call-module
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:state
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:attach
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:do

FOX:Module:entry-theme-list 26

Related

¢ fm:module

¢ fm:entry-theme

FOX:Module:file-storage-location

Description

Jm:file-storage-location is an extension of functionality defined by fim:storage-location (though internally the code
is likely to differ greatly), most of the module markup elements behave identically to storage-location. The major
difference between the two is that fm:file-storage-locations works in conjunction with schema element attributes
such as widget=""file'" allowing users to upload files and have them stored in a table as a BLOB as opposed to storing
XML data for a module to use.

The Upload Widget is used to upload files to the database. It is linked to a file-storage-location which allows FOX to
control adding, removing and updating files in the database. Each uploaded file is assigned a unique file-id which

can be used to reference it.

Syntax
Module markup

<fm:file-storage—location name="[Storage Location Name]">
<fm:cache-key string="module name + other text"/>
<fm:database>
<fm:query>
<fm:sql>
[SELECT]
</fm:sql>
</fm:query>
<fm:insert>
<fm:sql>
[INSERT]
</fm:sql>
</fm:insert>
<fm:update>
<fm:sql>
[UPDATE]
</fm:sql>
</fm:update>
<fm:delete>
<fm:sql>
[DELETE]
</fm:sql>
</fm:delete>
</fm:database>

</fm:file-storage—-location>

FOX:Module:file-storage-location

Schema element markup

<xs:element name="string" type="file-type" ns:edit="." fox:file-storage-location="string" fox:widget="file"
:upload-mode="no-interrupt-modal-upload-window"

fox:upload-window-type="modal"/>

Attribute Summary

Attribute | Data Type Description Required

name Xs:string Name of the storage location, this should have a prefix of 'sl' to denote storage location (i.e Yes
sl-search-results).

Schema Widget Syntax

o type=""file-type'" will mark this element as being used for file uploads.

* ns:widget=""file" will allow you to upload new files or view and download previously uploaded files.

 ns:file-storage-location=""storage-location-name"' is required to specify the file storage location that is to be
used by your upload widget.

* ns:edit=""XPath" attribute must evaluate to true if you want to be able to upload new files. By not including this
attribute or providing an XPath that evaulates to false you can restrict your upload widget to be used for viewing
or downloading previously uploaded files.

¢ ns:upload-mode can be one of three values:

* interrupt-on-module-push-pop-upload-target-any - Causes the upload to be interrupted on a module
push/pop. If your upload is to a transient DOM (i.e. theme) then a push or pop will cause the upload target
DOM element to be inaccessible, so the upload must be cancelled.

¢ no-interrupt-modal-upload-window - Specify this when the window type is modal - in this case, it is not
possible to transform the callstack during an upload.

¢ no-interrupt-upload-target-storage-location - Specify this when the upload is to the :{root} DOM, and is
modeless. The root DOM is still accessible to FOX even after a callstack transformation. Uploads in this mode
will not be interrupted, allowing the user to continue to work unimpeded in the parent window, without having
to wait for their upload to finish.

¢ ns:upload-window-type is used to define the upload window as modal or modeless

* ns:upload-widget-style can be used to control the display of the widget

<!-- Example of storage location —-->
<fm:file-storage-location ne="sl-files">
<fm:cache-key st "DOC_UPLOADER :1">
<fm:using us pe="UNIQUE"/>

</£m:cache-key>
<fm:database>
<fm:query>
<fm:sql>
SELECT file_content
FROM document_storage

WHERE file_id = :1

FOX:Module:file-storage-location

FOR UPDATE OF file_content
</fm:sql>
<fm:using>DOCUMENT_UPLOAD_WIDGET/file-id</fm:using>
</fm:query>
<fm:insert>
<fm:sql>
INSERT INTO document_storage (
file_id
, file_description
, file_content
, Created_date
, created_by)
VALUES (
gl
p 82
, empty_blob ()

SYSDATE

;t3)
</fm:sql>
<fm:using>DOCUMENT_UPLOAD_WIDGET/file-id</fm:using>
<fm:using>DOCUMENT_UPLOAD_WIDGET/captured-fields/description</fm:using>
<fm:using>: {user}/WUA_ID</fm:using>
</fm:insert>
<fm:update>
<fm:sql>
UPDATE document_storage SET file_id = file_id
WHERE file_id = :1
</fm:sql>
<fm:using>DOCUMENT_UPLOAD_WIDGET/file-id</fm:using>
</fm:update>
<fm:delete>
<fm:sql>
DELETE FROM document_storage
WHERE file_id = :1
</fm:sql>
<fm:using>DOCUMENT_UPLOAD_WIDGET/file-id</fm:using>
</fm:delete>

</fm:database>

</fm:file-storage-location>

<xs:element name="DOCUMENT_UPLOAD_WIDGET" type="file-type" ns:edit="." fox:file-sto on="gsl-files" fox:widget="file"

fox:upload-mode="no-interrupt-modal-upload-window"

fox:upload-window-type="modal"/>

The above code creates an upload widget named DOCUMENT _UPLOAD_WIDGET which will save all uploaded
files to the table document_storage. When a file is uploaded, the file_content field of the table will be populated
with the BLOB val of the uploaded file. Upon the removal of the upload widget from the schema the record

FOX:Module:file-storage-location

containing the file-id will be removed from the table.

Below is a typical file-storage table needed by FOX to successfully save files to.

CREATE TABLE document_storage (

file_id VARCHARZ (30) NOT NULL
, file description VARCHAR2 (4000)
, file_content BLOB NOT NULL
, created_date DATE
, Created_by NUMBER (20)

)
TABLESPACE tbsdata;

GRANT INSERT, UPDATE, DELETE, SELECT ON document_storage TO appenv;

Related

* fm:storage-location-list
* fm:storage-location
* fm:cache-key

¢ fm:database

FOX:Module:for-each-fetch

Description

Jm:for-each-fetch is a child element of fm:query and is used to process individual records as they are returned from
the database into the DOM. Per record, the fm:do block of for-each-fetch is run, with it's context set to the latest
record returned. This allows for personalized processing of records before they are stored into the DOM, and without

the need for a for-each command to be run separately after the query.

Attribute Summary

Attribute Data Type Description Required
post-dom-change | Y/N After database read and after XML DOM population of (Y), Defaultis Y | No
pre-dom-change | Y/N After database read and before XML DOM population of (Y), Default is N | No

Examples

<fm:query name="qgry-product-price">
<fm:target-path match="PRODUCT"/>
<fm:select>

SELECT

id

, price

FROM productmgr.products
</fm:select>

<fm: for-each-fetch post-dom-change="Y">

FOX:Module:for-each-fetch

30

<fm:do>
<fm:assign initTarget="./PRICE_DOLLAR" expr="number (./PRICE) * number (1.5)"/>
</£fm:do>
</fm: for-each-fetch>

</fm:query>

The above example will return all products from the products table, before fm:for-each-fetch is run on the first
record, the state of the DOM looks like this.

<PRODUCT>
<ID>1</ID>
<PRICE>12</PRICE>

</PRODUCT>

Jm:for-each-fetch is then invoked for that particular record and executing the fm:do block using data in the DOM

(as described by the attribute post-dom-change) which results in the following

<PRODUCT>
<ID>1</ID>
<PRICE>12</PRICE>
<PRICE_DOLLAR>18.0</PRICE_DOLLAR>
</PRODUCT>

This is repeated for every record returned, akin to a cursor for-loop. Like the cursor for loop, for large result sets this

will become increasingly slow and resource hogging.

Related

e fm:query

¢ fm:do

http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:do

FOX:Module:header

31

FOX:Module:header

Description

Jm:header is a container for elements that store meta data about your fox module, this data is primarily used to

describe your module to the database and other developers. However fm:title and fm:application-title are often

shown as html headers to your module that end users would use to identify the page they are on.

Jm:name ldentifier of your module to the database and fox engine. This must be unique and match the file name
which your module is saved under.

Jm:title A short title which area of your application your module applies to. (i.e Search Screen)
Jfm:application-title A short title which your entire application is known by. (i.e Product Management System)
Jm:documentation Contains child elements which provide useful developer information, such as parameters,
namespace list and comments. Deprecated.

Jm:version-no Current version number of this module, this is usually linked to a version control system.
Jfm:version-desc Description of the current version, usually linked to a version control system.

Jm:history Full list of changes since first committed to a version control system

Jm:description Basic text description of the module.

Jm:build-notes Notes related to environment (database/engine) specific prerequisites. Deprecated.

Jfm:help-text Non essential notes that may be of interest to other application develope

Syntax

<fm:module>

<fm:header>
<fm:name>|[MODULE_NAME]</fm:name>
<fm:title>[Title]</fm:title>
<fm:application-title>[Application title]</fm:application-title>
<fm:documentation>...</fm:documentation>
<fm:version-no>[Version Number]</fm:version-no>
<fm:version-desc>[Version Description]</fm:version-desc>
<fm:history>[History of changes]</fm:history>
<fm:description>|[Module Description]</fm:description>
<fm:build-notes>[Build Notes]</fm:build-notes>
<fm:help-text>[Help Text]</fm:help-text>

</fm:header>

</fm:module>

Examples

A typical fin:header will look as follows.

<fm:header>
<fm:name>PRODUCT_SEARCH</fm:name>
<fm:title>Product Search Area</fm:title>
<fm:application-title>Product Management System</fm:application-title>
<fm:documentation>...</fm:documentation>

<fm:version-no>1.3</fm:version—no>

http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:name
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:title
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:application-title
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:documentation
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:version-no
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:version-desc
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:history
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:description
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:build-notes
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:help-text

FOX:Module:header 32

<fm:version-desc>Updated search query to include new field.</fm:version-desc>
<fm:history>

1.3 Jane Updated search query to include new field.

1.2 Jane Changed formatting of results.
1.1 Tom Added mapset to select product from.
1.0 Tom Initial Revision

</fm:history>

<fm:description>Search module for product information</fm:description>
<fm:build-notes/>

<fm:help-text>This module relies off data being fed in via PRODUCT_ADD</fm:help-text>

</fm:header>

Related

e fm:name

e fm:title

* fm:application-title
¢ fm:documentation
e fm:version-no

¢ fm:version-desc

* fm:history

e fm:description

¢ fm:build-notes

e fm:help-text

http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:name
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:title
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:application-title
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:documentation
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:version-no
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:version-desc
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:history
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:description
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:build-notes
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:help-text

FOX:Module:help-text 33

FOX:Module:help-text

Description

Jm:help-text is a child of fm:header. 1t is used to store notes that may be useful to an application developer.

Syntax

<fm:header>

<fm:help-text>[Help Text]</fm:help-text>

</fm:header>

Examples

<fm:help-text>A lot of buffers from LIBRARYO01L have been overridden</fm:help-text>

Related

¢ fm:header

FOX:Module:history

Description

Jm:history is a child of fm:header. 1t is used to store a full version history from initial commit up to the latest

version. Version control software should target this element to update upon every commit.

Syntax

<fm:header>

<fm:history>[Version History]</fm:history>

</fm:header>

Examples

<fm:header>

<fm:history>

1.3 Jane Updated search query to include new field.
1.2 Jane Changed formatting of results.

1.1 Tom Added mapset to select product from.

1.0 Tom Initial Revision

</fm:history>

</fm:header>

FOX:Module:history

34

Related

e fm:header

FOX:Module:insert

Description

Jfm:insert is run when fm:query returns no rows in order to create a record for subsequent storage location writes.

Because the query returned no retults, :{root} is initialised to the element name described in fin:new-document.

Syntax

<fm:insert>
<fm:sql>
[SQL Update Statement]
</fm:sql>
<fm:using using-type="DATA-XMLTYPE">:bind xpath</fm:using>

</fm:insert>

Examples

Jm:insert works in the same fashion as any other DML INSERT statement, except when in comes to binding in the
:{root} DOM. For your insert to work properly, using-type="DATA-XMLTYPE" must be defined for the xml data
column of the table you wish to insert into. This contradicts how fm:update behaves, this is due to fm:update

working on data already existing, and fm:insert creating the data in the first place.

<fm:insert>
<fm:sqgl>
INSERT INTO portal_folders(
id
xml_data
)
VALUES (
01
12

</fm:sql>
<fm:using>: {params}/P_PF_ID</fm:using>
<fm:using using-type="DATA-XMLTYPE"/>

</fm:insert>

FOX:Module:insert

Note

Use of fm:insert is generally discouraged, the same affect can be accomplished through the use of fm:api in a more

controlled manner.

Related

¢ fm:database
* fm:using

e fm:sql

FOX:Module:into

Description

Jm:into is a child element fim:query and is used to specify the output location in a DOM of a specific column from
the query.

Syntax

<fm:into name="Column Name" datador ype="xs:type" sgl-type="sqgl:type" datadom-location="XPath location of DOM"/>

Attribute Summary

Attribute Data Type Description Required
name String identifier of column | Column which to location via this fm:into Yes
datadom-type Xs:type Type of data which the contents of the column will behave as | No

¢ dom
e xs:date

e xs:datetime

e xs:string
* Xs:itime
sql-type SQL internal types The internal SQL type of data contained by the column No
e varchar
e date
e xmltype
¢ clob
datadom-location | XPath String XPath location of output, relative to target-path/match No

Examples
<fm:query name="qry-sysdate">
<fm:select>
SELECT
id
, xml_data
FROM prodmgr.product_data

WHERE id = :product_id

FOX:Module:into

36

</fm:select>

<fm:using name=":product_id">:{params}/PRODUCT_ID/text () </fm:using>
<fm:into name="xml_data" datadom-location="./PRODUCT_DATA" datadom-type="dom" sgl-type="xmltype"/>
</fm:query>

The above statement will output the contents of the query into whichever path it's been matched on in fin:run-query
say for this example :{theme}/MY_RESULT. This dom will look as follows.

<MY_RESULT>

<ID>ID of product</ID>

<PRODUCT_DATA>Contents of xml_data column</PRODUCT_ DATA>
</MY_RESULT>

Related

* fm:query

e fm:run-query

FOX:Module:key

Description

Jm:key is the child element of fm:primary and holds the column name of either a primary of foreign key in the table

specified by fin:table

Syntax

<fm:key>COLUMN_NAME</fm:key>

Examples

<fm:key>PRODUCT_ID</fm:key>

Related

e fm:primary

http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:run-query

FOX:Module:library 37

FOX:Module:library

Description

<fm:library> elements allow other FOX modules to be incorporated into the specified current module. The result can

be seen in the "ModMerger" DOM available from the developers menu.

FOX takes the current module and looks at fin:library-list. All sections from each fm:library are included, so long as
they are not already defined in the current module. If definitions [e.g. actions, set-buffers etc] are already defined
[i.e. same name] in the current module, they are not libraried in, unless they are marked up with stub-overload="."
attribute, in this case they are called stubs, (not the same as previously mentioned stub data) the content is

over-written by the libraried in version. Entry themes are not libraried in.

Any namespace FOX finds in the definitions is inspected to see if it already exists in the current module. If it exists,
FOX renames the namespace for the libraried in module to make it unique. There are two exceptions to this rule: fox
is a namespace and is always global. other namespaces can by defined as global, and these are not renamed:
xmins:orders="http://www.og.dti. gov/fox_global”. At the end of the process FOX looks to the next fin:library

for more modules to include. The version of the processed module becomes the ‘current module’ and the algorithm is

recursive. Therefore any <fm:library> elements inside an already libraried module are also libraried in.

Libraried in components are then referenced just like local components.

Attribute Summary

None

Examples

<fm:library-list>
<fm:1library>LAYOUT1</£fm:library>
</fm:library-list>

LAYOUTTI is the most common module libraried in. It contains an extensive set of buffers and actions to provide a

generic layout for most FOX applications.

Related

o <fm:library-list>

http://www.og.dti.gov/fox_global
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:library-list

FOX:Module:library-list

FOX:Module:library-list

Description

<fm:library-list> is a container for <fm:library> elements and allows other FOX modules to be imported, making

their contents available in the parent module.

Attribute Summary

None

Examples

<fm:library-list>
<fm:1library>Module_Name</fm:library>

</fm:library-list>

Related

o <fm:library>

FOX:Module:lock

Description

Jm:lock is now deprecated, locking can be achieved using FOR UPDATE OF in fin:query's select statement.

Related

¢ fm:database

http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:library
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:library

FOX:Module:map-path

39

FOX:Module:map-path

Description

Jm:map-path is a child element of fm:table, this markup has been deprecated.

Syntax

<fm:map-path match="XPath"/>

Related

¢ fm:table

FOX:Module:map-set

Description
The <fm:map-set> element is used to generate enumerated lists, with each enumeration mapping to a data key.

A map-set behaves like an Enumeration list of values, but is highly dynamic in nature. While the user selects from
the 'keys', the user input is stored in XML as the corresponding 'data’ (see examples below). The data value is usually

a simple type (eg. xs:string), but it can also be a complex collection to allow greater flexibility.

Concepts

Before a map-set can be used we need to define where it is held, a <fm:storage-location> (SL). Map-set values can
be cached in memory only, or stored in the database and retrieved via a query. The cache key defines where in
memory the map-set is held. Note the cache key comprises a static name part, and a unique part using bind variable.
Without the unique bind variable, the map-set data will never change, because the storage location will not be
changed each time it is loaded. See <fm:cache-key> for more information. For a map set the SL's <fm:root-element>

is always 'map-set-list'. The storage location will ensure that the XML root element is initialized and no more.

The <fm:do> block code defines how the remainder of the XML is constructed (the key -> data mappings). This can
be done through a database query or using a template. (See examples below) An example of the format of the XML

the do block should generate is:

<map—-set>

<rec>
<key>Male</key>
<data>M</data>

</rec>

<rec>
<key>Female</key>
<data>F</data>

</rec>

</map-set>

The <fm:refresh-timeout-mins> element specifies how long the constructed data is good for. If underlying data

changes frequently, consider 5, 3 or even 0 mins. Otherwise 30 mins+.

http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Module:do

FOX:Module:map-set

40

A special value of 999999999 mins instructs FOX to never refresh the map set - not even the first time.

Note that a refresh may occur earlier than that specified, if XML was flushed from memory to free space.

Attribute Summary

Attribute Data Type Description Required
name Literal String | The name used to reference the map-set Yes
refresh String "Y' or If'Y', a refresh will be performed at intervals specified by the map set refresh element settings. No Defaults to

'N' (Boolean) | indicates Fox will never refresh or initially populate the map set by executing the child DO command. |'Y'
This means its up to the developer to manually load the map set (possibly in the storage location
initialization).
stub-overload | XPath String | If the XPath evaluates to true, any libraried in map-set with the same name will overwrite this one No
Examples

A map-set using a run-query to define the key-data mappings.

<fm:map-set-list>

<fm:map-set name="ms-mapset-example">

<fm:storage—-location>sl-ms-example</fm:storage—-location>

<fm

:do>

<fm:run—-query interface="dbint-mapsets" query="gry-mapset"/>
</fm:do>

<fm:refresh-timeout-mins>0</fm:refresh-timeout-mins>

<fm:refresh—-in-background>true</fm:refresh-in-background>

</fm:map-set>

</fm:map-set-list>

The query

<fm:query name="gry-mapset">

<fm:target-path match="map-set/rec"/>

<fm:select>

SELECT

INITCAP (name)

, deptno "data"

"key"

FROM trainingmgr.department

</fm:select>

</fm:query>

And the storage-location

<fm:storage—location name="sl-ms—-example">

<fm:cache-key string="example-ms"/>

<fm:new-document>

<fm:root-element>map-set-1list</fm:root—-element>

</fm:new-document>

</fm:storage-location>

FOX:Module:map-set

This map set can now be referenced in a schema element, creating a drop-down list with all the 'key' elements. The

corresponding 'data’ element will then be inserted into the 'departments' element in the DOM.

<xs:element name="departments" fox:map-set="ms-mapset-example" fox:widget="selector" fox:key-null="Select if required"/>

Related

* <fm:refresh-timeout-mins>

e <fm:refresh-in-background>
* <fm:storage-location>

* <fm:do>

* <fm:query>

e <fm:map-set-list>

FOX:Module:map-set-list

Description

<fm:map-set-list> is a container for <fm:map-set> elements used to generate enumerated lists with each enumeration

mapping to a data key.

Attribute Summary

None

Examples

<fm:map-set-list>
<fm:map-set>
<fm:storage-location/>
<fm:do/>
<fm:refresh-timeout-mins/>
<fm:refresh-in-background/>
</fm:map-set>

</fm:map-set-list>

Related

* <fm:map-set>

* <fm:storage-location>

http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:do

FOX:Module:matrix-and

42

FOX:Module:matrix-and

Description

fm:matrix-and is a child of fm:matrix-search, see fm:matrix-search

Related

¢ fm:matrix-search

FOX:Module:matrix-author

Description

Jfm:matrix-author is a child of fm:matrix-search, see fm:matrix-search

Related

¢ fm:matrix-search

FOX:Module:matrix-container-record-number

Description

fm:matrix-container-record-number is a child of fm:matrix-search, see fm:matrix-search

Related

¢ fm:matrix-search

FOX:Module:matrix-date-closed

43

FOX:Module:matrix-date-closed

Description

fm:matrix-date-closed is a child of fm:matrix-search, see fm:matrix-search

Related

¢ fm:matrix-search

FOX:Module:matrix-date-created

Description

fm:matrix-date-created is a child of fm:matrix-search, see fm:matrix-search

Related

¢ fm:matrix-search

FOX:Module:matrix-date-registered

Description

Jm:matrix-date-registered is a child of fm:matrix-search, see fm:matrix-search

Related

¢ fm:matrix-search

FOX:Module:matrix-external-reference

44

FOX:Module:matrix-external-reference

Description

fm:matrix-external-reference is a child of fm:matrix-search, see fm:matrix-search

Related

¢ fm:matrix-search

FOX:Module:matrix-into

Description

Jfm:matrix-into is a child of fm:matrix-search, see fm:matrix-search

Related

¢ fm:matrix-search

FOX:Module:matrix-notes

Description

Jfm:matrix-notes is a child of fm:matrix-search, see fm:matrix-search

Related

¢ fm:matrix-search

FOX:Module:matrix-or

45

FOX:Module:matrix-or

Description

fm:matrix-or is a child of fin:matrix-search, see fm:matrix-search

Related

¢ fm:matrix-search

FOX:Module:matrix-order-by

Description

fm:matrix-order-by is a child of fm:matrix-search, see fm:matrix-search

Related

¢ fm:matrix-search

FOX:Module:matrix-record-number

Description

Jfm:matrix-record-number is a child of fm:matrix-search, see fm:matrix-search

Related

¢ fm:matrix-search

FOX:Module:matrix-record-title

FOX:Module:matrix-record-title

Description

fm:matrix-record-title is a child of fimm:matrix-search, see fm:matrix-search

Related

¢ fm:matrix-search

FOX:Module:matrix-record-type

Description

Jm:matrix-record-type is a child of fm:matrix-search, see fm:matrix-search

Related

¢ fm:matrix-search

FOX:Module:matrix-search

fm:matrix-search

<fm:matrix-search results-target-path="Single Node Complex XPath"
mode="Literal String" results-set-count="Single Node Complex XPath"

[results-set-size="XPath Integer" results-set-offset="XPath Integer"]

[<fm:matrix-order-by name="'"'[[FOX:Reference:XPath_String|XPath
String]]''" [direction="'"'[[FOX:Reference:XPath_ String|XPath
Stringl]l''"1/>...1]

[<fm:matrix-into name="''Literal String''"
target-path=""'"'[[FOX:Reference:Simple XPath|Simple XPath]]''"/>...]

[<matrix—author words=""/>...]

[<matrix—-external-reference words=""/>...]

[<matrix—-notes words=""/>...]

[<matrix-record-title names=""/>...]

[<fm:matrix—-container-record—-number number=""/>...]

[<matrix—-record—-number number=""/>...]

[<matrix—-date-closed from-date="" to-date=""/>...]

[<matrix—-date-created from-date="" to-date=""/>...]

[<matrix—-date-registered from-date="" to-date=""/>...]

http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Reference:Complex_XPath
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Reference:Complex_XPath
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Reference:XPath_String
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Reference:XPath_String

FOX:Module:matrix-search

47

[<matrix—-record-type names=""/>...]

[<fm:matrix—-or>

[matrix search criteria]
</fm:matrix-or>...]
[<fm:matrix—-and>

[matrix search criteria]

</fm:matrix—and>...]

</fm:for-each>

Parameters

results-set-size
Default: 20

results-set-offset
Default: 0

matrix-order-by Parameters

direction
Will be ordered ascending if this evaluates "ascending", otherwise it will be order descending.

Default: "descending”

matrix-into Parameters

Default: <fm:matrix-into name="NUMBER" target-path="."/>

name

Comma-separated list.

Default: "NUMBER"

target-path
Default: "."

FOX:Module:mode-rule

FOX:Module:mode-rule

Description

<fm:mode-rule> is used within a <fm:security-list> and can be used to ENABLE a namespace for edit and
read-only set-out or DISABLE it. The namespace, privilege, state and theme attributes can all contain comma
separated conditions.

This provides a way of overriding active namespaces for set-out/menu-out. It is a further final way of filtering the

content of the screen under different conditions.

Attribute Summary

Attribute Data Type Description Required
namespace | Literal String | The namespace to enable/disable. Can be a comma separated list. Yes
operation | Literal String | ENABLE or DISABLE the namespace. Yes
privilege Literal String | The privilege(s) the user must have to view/edit the namespace. Can be a comma separated list. No
state Literal String | The sate(s) the user must be in to view/edit the namespace. Can be a comma separated list. No
theme Literal String | The entry theme(s) the user must be in to view/edit the namespace. Can be a comma separated list. No
xpath XPath String | The XPath test run relative to the root element. If it evaluates to true, the rule is applied. No
rule-ref Literal String | The name of a security-rule whose conditions to implement. No
Examples
Generic:

<fm:security-list>
<fm:mode-rule "namespace” "ENABLE | DISABLE" [

</fm:security-list>

A mode-rule which disables the 'department-edit' namespace when the user is in the 'review' or 'print’ state:

<fm:security-list>
<fm:mode-rule namespace="department-edit" operation="DISABLE" state="review"/>

</fm:security-list>

Related

e <fm:view-rule>
* <fm:security-rule>

* <fm:security-rule>

http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:view-rule
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:security-list
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:security-rule

FOX:Module:module

FOX:Module:module

Description

Jm:module is the root element for all fox module markup, this exists as a child element of xs:appinfo

Syntax

Position in the schema

<xs:schema>
<xs:annotation>
<xs:appinfo>

<fm:module>

</fm:module>
</xs:appinfo>
</xs:annotation>

</xs:schema>

Content of fim:module

<fm:module>
<fm:header/>
<fm:control/>
<fm:security-list/>
<fm:library-list/>
<fm:storage-location-list/>
<fm:entry-theme-list/>
<fm:action-list/>
<fm:db-interface-list/>
[<fm:css-1list/>]
<fm:presentation/>
<fm:state-list/>
<fm:template-list/>
<fm:mapset-list/>
[<fm:pagination—-definition-list/>]

</fm:module>

FOX:Module:module

Related

* fm:header

e fm:control

* fm:security-list

e fm:library-list

* fm:storage-location-list
* fm:entry-theme-list
* fm:action-list

* fm:db-interface-list
* fm:css-list

* fm:presentation

* fm:state-list

* fm:template-list

* fm:map-set-list

* fm:pagination-definition-list

FOX:Module:name

Description

Jm:name Is the identifier that the FOX engine will use for all processing. This must match the saved filename and be

unique to the envmgr.fox_components table and all other application mnemonic's.

Syntax

<fm:header>
<fm:name>[MODULE_NAME]</fm:name>

</fm:header>

Examples

Jfm:name must match the filename minus it's extension. i.e If my filename is as follows:

MY_ MODULE.xml

Then fim:name should look like this.

<fm:name>MY_MODULE</£fm:name>

FOX:Module:name

51

Notes

It is considered good practice to use uppercase on all module names, as the FOX engine considers all names case

sensitive. i.e MODULE_1 and module_1 are different modules to the engine.

Related

¢ fm:header

FOX:Module:name-space

Description

Jm:name-space is a child element of fin:name-space-list and contains documentation about namespaces used inside
the fox module that it is specified in.

Syntax

<fm:name-space>
<fm:name> [Name of namespace (s) being documented]</fm:name>
<fm:description>[Description of namespace]</fm:description>
<fm: comments> [Comments on use of namespace]</fm:comments>

</fm:name-space>

Examples

<fm:name-space>
<fm:name>email-list-add-user</fm:name>
<fm:description>When adding users to the mailing list, use this namespace to access
associate functionality </fm:description>
<fm:comments>You can remove a user using the default mail name space email-list</fm:comments>

</fm:name-space>

Related

* fm:name-space-list

FOX:Module:name-space-list

52

FOX:Module:name-space-list

Description

Jm:name-space-list is a child element of fm:documentation and a container element for the repeating element

Jm:name-space. This contains information about various name spaces used in the fox module.

Syntax

<fm:name-space-list>

<fm:name-space>. . .</fm:name-space>

</fm:name-space-list>

Related

¢ fm:documentation
¢ fm:header

e fm:name-space

FOX:Module:new-document

Description

fm:new-document initializes the :{froot} DOM to the child node fm:root-element when either no fm:database

element is present or fim:query return no rows.

Syntax

<fm:new-document>
<fm:root—element> (Root Element Name)</fm:root-element>

</fm:new—-document>

Examples

<fm:new—-document>
<fm:root—element>FOLDER</fm:root—element>

</fm:new-document>

Will initialise :{root} to

<FOLDER/>

Such that the XPath :{root} will return the FOLDER element as the root element.

FOX:Module:new-document

53

Related

* fm:storage-location
* fm:file-storage-location

¢ fm:root-element

FOX:Module:page-size

Description

Jfm:page-size is a child element of fm:pagination-definition and is part of FOX enhancements around

Jm:run-query2. It specifies the result set size maximum per page.

Syntax

<fm:page-size>[Maximum page size]</fm:page-size>

Examples

<fm:page-size>20</fm:page-size>

In the above example, the page size of the pagination buffer will be set to 20 records, the query will fill up pages to

their maximum before initializing a new page/chunk in the pagination cache.

Related

* fm:pagination-definition
* FOX Pagination

http://wiki.fivium.co.uk/mediawiki/index.php?title=Training:Fox:Pagination

FOX:Module:pagination-definition 54

FOX:Module:pagination-definition

Description

Jfm:pagination-definition is a child element of fim:pagination-definition-list and part of the enhancements brought in
by fm:run-query2. This describes size of the pagination pull per page, and any processing involved either before or
after the dataset has been pulled into the page. The built in FOX pagination, to summarise, stores the result of a
query in a pagination cache on the database, this is then split into chunks relating to the size defined in fm:page-size

and the current page being selected. The following chunks are then pulled down/loaded in the DOM upon request.

Syntax

<fm:pagination-definition name="[Page Definition Name]">
<fm:page-size>[Page Size]</fm:page-size>
<fm:pre-page>
<fm:do>...</fm:do>
</fm:pre—-page>
<fm:post-page>
<fm:do>...</fm:do>
</fm:post-page>

</fm:pagination—-definition>

Examples

<fm:pagination—-definition name="pd-results">
<fm:page-size>50</fm:page—-size>
<fm:pre-page>
<fm:do>
<fm:remove match=":{root}/SEARCH_RESULTS/PRODUCTS [SELECT/SELECTED != 'true']"/>
</fm:do>
</fm:pre-page>
<fm:post-page>
<fm:do>
<fm:call action="action-get-size-of-results"/>
</fm:do>
</fm:post-page>

</fm:pagination-definition>

The above example is a pagination definition for a products search screen which allows results to be carried over
from page to page, this is achieved by removing the non-selected results from SEARCH_RESULTS before the new
results are populated. The 'Result Count' typically displayed at the end of query is updated with the new size of the

result set, this has to happen after pagination has returned the results.

Jm:pre-page if called, stops the FOX Pagination engine from removing the previous results as it is assumed you
want to manually handle how to removed the old result set (as shown here in the example). fin:post-page does not

share this functionality.

FOX:Module:pagination-definition

55

Notes

Jfm:pagination-definition only describes the layout and before/after processing of the query, it does not state where
the results will go inside the DOM or when to fetch them. That is handled by fm:query and fm:run-query2.

More information on the FOX Engine implementation of pagination can be found here FOX Pagination

Related

* fm:pagination-definition-list
» fm:page-size

* fm:pre-page

* fm:post-page

e fm:query

* fm:run-query2

* FOX Pagination

FOX:Module:pagination-definition-list

Description

Jm:pagination-definition-list is an optional module level container for repeating fm:pagination-definition elements,

this is part of a feature still in development relating to fim:run-query2 and cached pagination of pages.

Syntax
<fm:pagination-definition-list>
<fm:pagination-definition name="[Pagination Definition Name]">...</fm:pagination-definition>

</fm:pagination-definition-list>

Notes

Feature still in development, behavior may change unannounced as a result of this.

Related

¢ fm:module

* fm:pagination-definition

http://wiki.fivium.co.uk/mediawiki/index.php?title=Training:Fox:Pagination
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:run-query2
http://wiki.fivium.co.uk/mediawiki/index.php?title=Training:Fox:Pagination

FOX:Module:param 56

FOX:Module:param

Description

Jm:param is child element of fim:param-list and part of the web service processing in the FOX Engine using SOAP.
FOX accepts data in the specified SOAP wrapper and validates input data defined in fim:param, processes the data
using commands specified in the module, then returns the data to the calling user (or application) in the format as

defined by fm:return.

Syntax

<fm:param name="Element Name" type="Element Content Type" xpath="Xpath" mand="Xpath" description="Text Description"/>

Attribute Summary

Attribute Data Type Description Required

name XML Element Name Name of XML element without namespace that is to be Yes

expected as input.

xpath XPath location Location of xml in DOM to validate input against No

type xs:<data-type> for leaf nodes, Element Name (LIST_XYZ) | Datatype to validate against, element name can be used as | Yes
for branch nodes data-type

mand XPath boolean Describes if input XML element is mandatory No

description | xs:string Text description of parameter No

Examples

Below is a basic example of how a FOX module behaves as a web service.
<fm:entry-theme name="GetMyTest" type="service-rpc">
<fm:storage-location>sl-main</fm:storage-location>
<fm:state>state-inital</fm:state>
<fm:attach>/*</fm:attach>
<fm:do>
<fm:assign initTarget=":{return}/MY_OUTPUT" expr=":{params}/MY_DATA/text ()"/>
</fm:do>
<fm:param-list>
<fm:param name="MY_DATA" type="xs:string"/>
</fm:param-list>
<fm:return-list>
<fm:return name="MY_OUTPUT" type="xs:string"/>
</fm:return-list>

</fm:entry-theme>

In this examples entry theme, take no of:

o fm:-entry-theme type as service-rpc; This tells the fox engine to build a WSDL document and listen to SOAP
requests on this modules URL. To access the WSDL for a web service module the URL will follow the pattern
http://.../fox/app_nmemonic/ MODULE_NAME?WSDL

http://.../fox/app_nmemonic/MODULE_NAME?WSDL

FOX:Module:param 57

* MY_DATA as a parameter targetable as :{params}/MY_DATA
¢ MY_OUTPUT as a return element targetable as :{return}/MY_OUTPUT

» The processing of the specified parameter to the return data in fin:do

As you can see, this looks to echo the parameter in :{params} to a return element in :{return}. The difference
between the param and return is that param will validate the input and return a SOAP:fault if the input data does not
match up. fim:return is informational only, the fox module can return more than what is specified in fin:return-list

but the WDSL will not show markup for anything not defined.
Below is a sample SOAP request to http://.../fox/app_nmemonic/MODULE_NAME

<soapenv:Envelope xmlns: "http://schemas.xmlsoap.org/soap/envelope/" xmlns:lc="http://www.myurl.co.uk/fox/webservices/devl/LC_WEBSRV">
<soapenv:Header/>
<soapenv:Body>
<lc:GetMyTest>
<MY _DATA>Echo what I say!</MY DATA>
</lc:GetMyTest>
</soapenv:Body>

</soapenv:Envelope>

Below is a sample SOAP response for the above request
<soap:Envelope xmlns: "http://schemas.xmlsoap.org/soap/envelope/" xmlns:ns="http://www.myurl.co.uk/fox/webservices/devl/LC_WEBSRV">
<soap:Header/>
<soap:Body>
<ns:GetMyTestResponse>
<MY_OUTPUT>Echo what I say!(/MY OUTPUT>
</ns:GetMyTestResponse>
</soap:Body>

</soap:Envelope>

As you can now see, :{return}/MY_QUTPUT is now contained in the SOAP response.

Please note use use of:

<fm:entry-theme name="GetMyTest" type="service-rpc">

and the SOAP request markup

<lc:GetMyTest/>

When using fm:entry-theme type of service-rpc, this defines the SOAP document needed to access the correct
webservice to be tightly specified. As you can see the entry theme and soap element share the same name (element to
attribute). Meaning that when FOX is listening on the modules URL, it knows what SOAP data belongs to which
service. There is another 'loose' method of doing this; by using type of service-document in entry theme instead as

shown below.

<fm:entry-theme name="GetMyTest" type="service—-document">

What this means is that FOX no longer needs to know which webservice this belongs too, which is fine in a single
web service situation (single 'service-document scenario'). In the case of multiple service-document entry-themes'
FOX will not know which to feed the SOAP data too. In order to circumvent this issue, Uniqie fm:param values for
the root data element should be used. In most cases this is bad practice to define more than one service-document per

module, service-rpc should be used instead.

http://.../fox/app_nmemonic/MODULE_NAME

FOX:Module:param

58

Notes

More information about SOAP and it's uses can be found here http://www.w3.org/ TR/soap here http://www.

w3schools.com/soap/soap_httpbinding.asp

When creating and testing SOAP request/response use of SoapUI is advised, this allows for SOAP document
generation based off any WDSL and can be found here http://www.soapui.org/

Related

* fm:entry-theme
e fm:param-list
e fm:return-list

¢ fm:return

FOX:Module:param-list

Description

Jm:param-list is part of FOX's web service integration, parameters described here are used for validation of a SOAP
request. If the SOAP request is valid, FOX will process and return the result depending on the setup of fim:result-list.

Syntax

<fm:param-list>

<fm:param name="Element Name" type="Element Type" xpath="XPath text" mand="Mand XPath" description="Description text"/>

</fm:param-list>

Related

* fm:entry-theme
e fm:param

e fm:return-list

http://www.w3.org/TR/soap
http://www.w3schools.com/soap/soap_httpbinding.asp
http://www.w3schools.com/soap/soap_httpbinding.asp
http://www.soapui.org/

FOX:Module:parameter

FOX:Module:parameter

Description

Jfm:parameter is deprecated, use fim:param-list instead.

Syntax

<fm:parameter>
<fm:name/>
<fm:description/>
<fm:data-type/>
<fm:data-mapping/>

</fm:parameter>

Related

e fm:parameter-list
* fm:name

e fm:description

* fm:data-type

e fm:data-mapping

FOX:Module:parameter-list

Description

Jm:parameter-list is a deprecated feature of fim:documentation when a decendant of fm:entry-theme use

Jfm:param-list instead.

Syntax

<fm:parameter-list>
<fm:parameter/>

</fm:parameter-list>

Related

¢ fm:documentation

e fm:parameter

FOX:Module:post-page 60

FOX:Module:post-page

Description

fm:post-page is a child element of fin:pagination-definition. This contain FOX Commands which will run AFTER

a new page has been selected via fm:pagination-menu-out or fm:go-to-page and loaded into the DOM.

Syntax

<fm:post-page>
<fm:do>...</fm:do>

</fm:post-page>

Examples

<fm:post-page>
<fm:do>
<fm:alert message="Showing string(:{sys}/sqglquery/paging/pagecount/text ()) rows."/>
</fm:do>

</fm:post-page>
The above example will return the count of rows returned into the DOM for the page.

Related

* fm:pagination-definition

FOX:Module:pre-condition

61

FOX:Module:pre-condition

Description

Jm:pre-condition is a child element of fm:documentation and is used storing notes about any parameters, contexts,

or data required before use.

Syntax

<fm:pre-condition>[Pre-condition]</fm:pre-condition>

Examples

<fm:pre-condition>Parameter MY_ID must be set</fm:pre-condition>

Related

¢ fm:documentaion

FOX:Module:pre-page

Description

fm:pre-page is a child element of fim:pagination-definition. This contain FOX Commands which will run after a
new page has been selected via fm:pagination-menu-out or fm:go-to-page but BEFORE the results have been
loaded into the DOM. Defining pre-page will alter how the pagination query returns results into the DOM, by default
the query will PURGE the previous results, but with pre-page defined the query will now AUGMENT. This allows
for user control over which records should remain in the DOM, useful for holding user selected results from a

previous query.

Syntax

<fm:pre-page>
<fm:do>...</fm:do>

</fm:pre—-page>

Examples
<fm:pre-page>
<fm:do>
<fm:remove match=":{root}/SEARCH_RESULTS/PRODUCTS [SELECT/SELECTED != 'true']"/>
</fm:do>

</fm:pre-page>

The above example will remove any records from SEARCH_RESULTS where by they have not been selected, this

behavior allows a user to select results to carry over from page to page (and query to query).

FOX:Module:pre-page

Related

* fm:pagination-definition

FOX:Module:presentation

Description

The <fm:presentation> element is a container for <fm:set-page> and <fm:set-buffer> commands, which controls

how the page is presented through HTML generation commands and standard HTML markup.

Attribute Summary

None

Examples

<fm:presentation>
<fm:set-page>
<html>
<head>
<title>FOX Basics</title>
</head>
<body>
<fm:include name="buffer-content"/>
</body>
</html>
</fm:set-page>
<fm:set-buffer name="buffer-content">
<h2>Hello World!</h2>
</fm:set-buffer>

</fm:presentation>

Related

¢ <fm:set-buffer>
* <fm:set-page>
¢ <fm:include>

e HTML Generation Command Reference

http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Reference%23HTML_Generation_Reference
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:set-buffer
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:set-page
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:HTML:include
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Reference%23HTML_Generation_Reference

FOX:Module:primary

FOX:Module:primary

Description

Jm:primary is the container element for primary and foreign key references in table specifier in fm:table of which

Jm:primary is a child of.

Syntax

<fm:primary>
<fm:key>PRIMARY_KEY</fm:key>
<fm:key>FOREIGN_KEY</fm:key>
<fm:key>FOREIGN_KEY</fm:key>

</fm:primary>

Examples

<fm:primary>
<fm:key>PRODUCT_ID</fm:key>
<fm:key>PRODUCT_TYPE</fm:key>

</fm:primary>

Related

¢ fm:table
* fm:key

FOX:Module:query

64

FOX:Module:query

fm:query

Description

<fm:query name="String">
[<fm:target-path match=""'"'Simple XPath''"/>]
[
<fm:primary>
[<fm:key>String</fm:key>...]
</fm:primary>
]
<fm:select>
SQL Select Statement
</fm:select>
[<fm:using>...]
[<fm:into>...]

</fm:query>

Defines a SQL select statement to be run with the run-query command. Bind variables can be defined via fm:using.

If the query returns multiple rows they are returned into seperate XML complex types as defined by target-path.

fm:target-path

The match attribute of this element provides a Simple XPath defining an element which will contain the column
set for each row returned by this query. It is evaluated relative to the node which was targeted in the match

attribute of the associated fm: run—-query command.

Typically a target-path is defined on a query which will return multiple rows. When a target-path is evaluated, any
elements which do not exist are initialised. The rightmost element in a target-path is initialised for every row.

Because it is a Simple XPath, you cannot use Contexts within a target-path.

E.g. the target-path . /RESULT_LIST/RESULT will initialise one element called RESULT_LIST which will
contain as many RESULT elements as there are rows in the result set of the query. Each RESULT will contain the
expected XML structure of a single row.

fm:select

The SQL select statement is defined in the fm:select clause The select statement can optionally have Bind Variable

placeholders Bind Variables can be bound by :name (preferred method), and by position number with :1 or ?

e.g. if using names, it does not matter which order you put them in when listing each <fm:using
name="name">Xpath</fm:using>, however, if you use :3 for example in the query as a bind variable, you will have
to make sure the third <fm:using>Xpath</fm:using> you make actually points to the element you require for that

particular bind variable.

http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:run-query
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Reference:Contexts

FOX:Module:query

65

fm:using
The fm:using clause is required for each bind variable Attribute name is only required when binding by name e.g.

name=":data"
NB: Do not use any of the SQL reserved words as your bind variable names. L.E. :data

The value to bind is derived using XPath, either Attribute: datadom-location="/*/DATA" Text Content:
<fm:using>: {params }/P_ACT_ID</fm:using> The XPath is evaluated relative to EACH Subject Element (in the
run-query match clause) Optional attribute sql-type tells Oracle the SQL datatype provided. Default: VARCHAR?2
Optional attribute datadom-type tells FOX the XMLSchema data type The default datadom-type is either obtained

from the xs:element type or defaults to xs:string

fm:storage-location Interaction

In addition to it's use in fm:run-query, fm:query is used as part of fim:storage-location and behaves in a slightly
different manner. fin:using binds can only be target by number not name (:1, :2) and the select DML fits inside

Jm:sql instead. See fm:storage-location for more advice.

Related

* fm:database

* fm:storage-location
* fm:run-query

e fm:run-query2

* fm:using

* fm:target-path

* fm:select

e fm:into

* fm:row-lock

¢ fm:for-each-fetch

http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:run-query
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:run-query2

FOX:Module:refresh-in-background

66

FOX:Module:refresh-in-background

Description

<fm:refresh-in-background> is a child element of <fm:map-set> and is used to control if the parent map-set should
be refreshed in the background.

If the element contains 'false’, then the map set will only be refreshed the next time the map-set is accessed and the
timeout duration has expired. If 'true' then when the refresh timeout has expired, the map-set will be automatically

refreshed.

Note that for background refreshing to be enabled, the refresh timeout must be at least 5 minutes.

Attribute Summary

None

Examples

<fm:map-set-list>
<fm:map-set>
<fm:storage-location/>
<fm:do/>
<fm:refresh-timeout-mins>10<fm:refresh-timeout-mins/>
<fm:refresh-in-background>false</fm:refresh-in-background>
</fm:map-set>

</fm:map-set-list>

Related

* <fm:map-set>

* <fm:storage-location>

FOX:Module:refresh-timeout-mins

67

FOX:Module:refresh-timeout-mins

Description

<fm:refresh-timeout-mins> is a child element of <fm:map-set> and is used to control how often the map-set should

be refreshed.
If the refresh timeout has expired, the next time the map set is accessed the contents will be reloaded by FOX.

The element contains an integer, which represents the refresh timeout in number of minutes. There is a special value
999999999, which instructs FOX to never refresh the map set - not even the first time.

Attribute Summary

None

Examples

<fm:map-set-list>
<fm:map-set>
<fm:storage-location/>
<fm:do/>
<fm:refresh-timeout-mins>10<fm:refresh-timeout-mins/>
<fm:refresh-in-background>false</fm:refresh-in-background>
</fm:map-set>

</fm:map-set-list>

Related

e <fm:map-set>
* <fm:refresh-in-background>

* <fm:storage-location>

FOX:Module:return

FOX:Module:return

Description

Jm:return is child element of fim:return-list and part of the web service processing in the FOX Engine using SOAP.

Syntax

<fm:return e="Element Name" type="Element Content Type" xpat "XPath" r "XPath" descript "Text Description"/>

Attribute Summary

Attribute Data Type Description Required

name XML Element Name Name of XML element without namespace that is to be expected as input. | Yes

xpath Xpath location Location of xml in DOM to validate input against No

type xs:<data-type> or Element name | Datatype to validate against, element name can be used as data-type Yes

mand Xpath boolean Describes if input XML element is mandatory No

description | xs:string Text description of parameter No
Notes

This is a brief summary, most/all the inforamation regarding SOAP and fm:result's use in web services can be found

at fm:param

Related

* fm:entry-theme
e fm:param-list
e fm:return-list

e fm:param

FOX:Module:return-list

69

FOX:Module:return-list

Description

Jm:return-list is a container for fim:return, this is used as part of the FOX web services.

Syntax

<fm:return-list>

<fm:return name="Element Name" type="Element Type" xpath="XPath text" mand="Mand XPath" description="Description text"/>

</fm:return-list>

Related

e fm:entry-theme
e fm:return

e fm:param-list

FOX:Module:root-element

Description

fm:root-element contains the element name for :{root} to initialise to.

Syntax

<fm: root-element>ROOT_ELEMENT NAME</fm:root—-element>

Examples

<fm:root-element>FRUIT</£fm:root—element>

Will initialise :{root} too

<FRUIT/>

Notes

This will only initalise the :{root} DOM if fm:database's fm:select returns O rows, or is undefined.

Related

¢ fm:new-document

FOX:Module:row-lock

70

FOX:Module:row-lock

Description

Jm:row-lock is a child element of fm:query, this feature is now deprecated and ignored by the FOX engine.

Related

e fm:query
e fm:select

¢ fm:current-of-item

FOX:Module:schema

Description

Jm:schema is a child element of fm:library-list, the feature is deprecated and ignored. Use schemas defined inside

Jm:library instead.

Related

e fm:library-list

e fm:library

FOX:Module:security-list

Description

<fm:security-list> is a container for <fm:mode-rule>, <fm:view-rule> and <fm:security-rule> commands and is used
to implement security tables, a set of rules for overriding active namespaces for set-out/menu-out.

It is a further final way of filtering the content of the screen under different conditions.

Note that it is generally preferable to use a security table rather than rely on XPaths on individual set-out commands,

as this greatly improves readability and maintainability
Security rules work according to the following principles:

1. Every namespace is turned on until mentioned in a security rule.

2. Once a namespace is mentioned in a rule it must be explicitly ENABLE-d (in that rule or another) if required.

3. A rule with operation ENABLE will whitelist the namespace under the specified conditions. Different
ENABLE-ing rules are OR-ed together.

4. A mode-rule with operation DISABLE will blacklist the namespace under specified conditions. DISABLE-ing
rules overwrite ENABLE-ing rules.

5. Attribute conditions are AND-ed together. e.g. theme="view" privilege="VIEW_OBJECT" means 'on entry
theme "view" AND with privilege "VIEW_OBJECT")'

6. Attribute comma-separated-values are OR-ed together. e.g. theme="view, edit" privilege="VIEW_OBJECT"
means '(on entry theme "view" OR "edit") AND with privilege "VIEW_OBJECT"

This rule processing approach is similar to Fire Wall Rule Table processing.

http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:mode-rule
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:mode-rule
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:security-rule

FOX:Module:security-list

71

Attribute Summary

None

Examples

You will want to understand the <fim:mode-rule> and <fm:view-rule> commands before reading these examples.

Example 1

Consider that we have a department-edit namespace that we wish to disable in the state "state-view" we may try the

security list:

<fm:security-list>
<fm:mode-rule namespace="department-edit" operation="DISABLE" state="state-view"/>

</fm:security-list>

This will have the effect of turning off department-edit for state "state-view", but as department-edit has now been

mentioned in a rule, it will be DISABLEGA for all conditions (principle 2 above).

Thus we have to enable the namespace for other conditions:

<fm:security-list>
<fm:mode-rule namespace="department-edit" operation="DISABLE" state="state-view"/>
<fm:mode-rule namespace="department-edit" operation="ENABLE"/>

</fm:security-list>

Now consider that we want to only allow department-edit where the user has the privilege "EDIT_DEPARTMENT";
we can do this:

<fm:security-list>
<fm:mode-rule namespace="department—-edit" operation="DISABLE" state="state-view"/>
<fm:mode-rule namespace="department-edit" operation="ENABLE" privilege="EDIT_DEPARTMENT"/>

</fm:security-list>

N.B. If a user enters the state "state-view" with privilege "EDIT_DEPARTMENT" then department-edit will be
DISABLEGA. Due to principle 4 processing for the namespace stops after a successful DISABLE.

Example 2

Now consider we are scrapping the namespace department-edit and wish to use a namespace department instead. We

want to control whether fields are read-only or editable via a security table and try:

<fm:security-list>
<fm:mode-rule namespace="department" operation="ENABLE"/>
<fm:view-rule namespace="department" operation="ENABLE" theme="view"/>

</fm:security-list>

The mode-rule ENABLE-s department as editable for all conditions initially.

The developer has then attempted to force department to be read-only under the entry-theme "view" using a
view-rule.

Due to principal 3 above, however, the ENABLE-ing rules are OR-ed together and the mode-rule makes the
view-rule redundant.

The developer may solve this by doing the following:

http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:mode-rule
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:mode-rule

FOX:Module:security-list

72

<fm:security-list>
<fm:mode-rule namespace="department" operation="ENABLE" theme="edit, create"/>
<fm:view-rule namespace="department" operation="ENABLE" theme="view"/>

</fm:security-list>

Thus allowing department fields to be editable on only the "edit" and "create" entry themes, and read-only on
"view".
We next want to add a condition so that nobody can view/edit data without the "DEPARTMENT" privilege:

<fm:security-list>

~="department" operation="ENABLE" theme="edit, create" privilege="DEPARTMENT"/>

<fm:mode-rule name

<fm:view-rule namespace="department" operation="ENABLE" theme="view" privilege="DEPARTMENT"/>

</fm:security-list>

The privilege "DEPARTMENT" condition must be added to both rules. Both rules will be evaluated and can
ENABLE department even if the first fails.

Related

¢ <fm:mode-rule>
e <fm:view-rule>

* <fm:security-rule>

FOX:Module:security-rule

Description

A set of conditions (privilege, state, theme and XPath) may be defined using an <fm:security-rule>.
These can be referenced using the rule-ref attribute on another mode or view-rule.

This allows complicated mode attributes to be defined once, and then referenced in multiple rules.

Attribute Summary

Attribute | Data Type Description Required

name Literal The name of the security-rule. This name can then referenced in the 'rule-ref’ attribute of a mode/view-rule. Yes
String

privilege | Literal The privilege(s) the user must have to activate the mode/view-rule that references this security-rule. Can be a | No
String comma separated list.

state Literal The sate(s) the user must be in to activate the mode/view-rule that references this security-rule. Can be a No
String comma separated list.

theme Literal The entry theme(s) the user must be in to activate the mode/view-rule that references this security-rule. Can | No
String be a comma separated list.

xpath XPath The XPath test run relative to the root element. If it evaluates to true, the mode/view-rule that references this | No
String security-rule is activated.

http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:mode-rule
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:view-rule
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:security-rule

FOX:Module:security-rule 73

Examples

The following will apply the privilege="DEPARTMENT" state="licence-review" attributes to both the mode-rule

and view-rule:

<fm:security-list>

<fm:
<fm:
<fm:

</fm:

security-rule name="department-privs" privilege="DEPARTMENT" state="licence-review"/>
mode-rule namespace="department" operation="ENABLE" rule-ref="department-privs"/>

view-rule namespace="department" operation="ENABLE" theme="view" rule-ref="department-privs"/>
security-list>

Related

e <fm:mode-rule>

e <fm:view-rule>

* <fm:security-list>

FOX:Module:select

Description

Jm:select is a child element of fm:query and contains an single SQL statement which will run upon fim:run-query is

called. fm:using allows for bind variables, targeting data in a DOM, inside the select statement

Syntax

<fm:

select>

[SQL SELECT STATMENT]

</fm:select>

Examples

<fm:

select>

SELECT

4

4

product_id
product_name

prouct_price

FROM prodmgr.products
WHERE product_id = :product_id

</fm:select>

<fm:

using name=":product_id">: {params}/PRODUCT_ID</fm:using>

http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:mode-rule
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:view-rule
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:security-list

FOX:Module:select

74

Notes

It's considered good practice to align SQL statement to the left of the module XML, PrettyPrint functions can often
be configured to ignore formatting on the contents of specific tags. This allows other developers to copy and paste

the SQL into Toad without modification or hassle and is generally easier to read.

Related

* fm:query

e fm:using

FOX:Module:set-buffer

Description

The <fm:set-buffer> element is a container for all the HTML generation commands you wish FOX to run, plus any
additional HTML which may be needed for boilerplate text, page structure, etc. IN other words, it is the definition of
the presentation markup for a logical area of the screen. FOX allows most standard HTML markup within buffers
(and <fm:set-page>), with a few exceptions such as <script> tags. Using buffers allows presentation logic to be
reused between modules and states, and also helps to keep the <fm:presentation> section more logically structured.

As a result, buffers are one of the most common libraried in elements.

The convention is to wrap all buffers in a top-level buffer with a name attribute of 'buffer-content’. This makes
librarying in <fm:set-page> and layout templates possible, as they respect this naming convention and will always

include 'buffer-content'.

Attribute Summary

Attribute | Data Type Description Required
name Literal The name of the buffer. Used when referencing the buffer from an <fm:include> command. Yes
String
stub-overload | XPath If the Xpath evaluates to true, any libraried in <fm:set-buffers> with the same name will replace this one. | No
See <fm:library>.

Examples

<fm:presentation>
<fm:set-page>
<html>
<head>
<title>FOX Basics</title>
</head>
<body>
<fm:include name="buffer-content"/>
</body>
</html>
</fm:set-page>

http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Reference%23HTML_Generation_Reference
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:presentation
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:set-page
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:library

FOX:Module:set-buffer

75

<fm:set-buffer name="buffer-content">
<h2>Hello World!</h2>
</fm:set-buffer>

</fm:presentation>

Related

* <fm:presentation>
* <fm:set-page>
o <fm:include>

e HTML Generation Command Reference

FOX:Module:set-page

Description

<fm:set-page> is the top-level command which FOX looks for to decide what to display to the user. It will typically

contain the basic skeleton of an HTML page such as <html>, <head> and <body> tags. Although not mandatory, the

set-page element should always include 'buffer-content' as this is the name used for the top-level buffer which

contains the page layout commands. Often the set-page element is imported, typically from the LAYOUT1 module.

FOX allows most standard HTML markup within buffers (and <fm:set-page>), with a few exceptions such as

<script> tags.

Attribute Summary

Attribute Data Description Required
Type
stub-overload | XPath If the Xpath evaluates to true, any libraried in <fm:set-buffers> with the same name will replace this one. No
See <fm:library>.

Examples

<fm:presentation>
<fm:set-page>
<html>
<head>
<title>FOX Basics</title>
</head>
<body>
<fm:include name="buffer-content"/>
</body>
</html>
</fm:set-page>
<fm:set-buffer name="buffer-content">
<h2>Hello World!</h2>
</fm:set-buffer>

</fm:presentation>

http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:presentation
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:set-page
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:HTML:include
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Reference%23HTML_Generation_Reference
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:library

FOX:Module:set-page

76

Related

* <fm:presentation>
e <fm:set-buffer>
e <fm:include>

e HTML Generation Command Reference

FOX:Module:show-popup

Schema Location

module
antry-thame-list
entry-theme
do - do-Block-type
action-list
actian
i - go-tlock-type
srate-lst
stata

r—-—————— —— — — g
|

d'nhlbfuck-tppe

I N I': '-I
5hurw-p opup

Bl5E
show-popup
2l5e

L show-popup
try

"'r-l_!-'l-'“.l"l do - do-black-type
man-set-lst da - do-tlock-type
[=] - = 3 r _I _I -
map-set e
. ‘ o - do-thock-type
da - do-black-type for-each VP
do - do-block-type
transaction

o - do-ock-type
context-localise

show-popup
show-popup

|
' |
' |
! |
' |
' |
! |
' |
do - do-Black-type I Latc |
' |
! |
' |
' |
! |
' |
! |
Description
Multifunctional command which uses a browser popup window to display either:

* An arbitrary URI

* The contents of a storage location

* A FOX-generated PDF document

* A set of Matrix records

* A streamed zip file containing multiple files

This will often result in a file download being initiated by the browser.

NOTE: due to a bug in IE6/7/8 and systems with restricted settings, show-popup commands which initiate a file
download require low system privilege users to depress the CTRL key from initiating the action to seeing the save

file dialog.
Syntax

storage-location

@ doc-template-name doc-template-target-metadata

<fm: show-popup matrix- recurd—nu—xpath W 'l'_.-.
m I:.- zip-compression-level i
4 db-interface = db-query & I W

window-name . J-win-features St file-name

http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:presentation
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:set-buffer
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:HTML:include
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Reference%23HTML_Generation_Reference
http://wiki.fivium.co.uk/mediawiki/index.php?title=File:Fox_schema_show-popup.png
http://wiki.fivium.co.uk/mediawiki/index.php?title=File:Fox_syntax_show-popup.png

FOX:Module:show-popup

77

Attribute Summary

Attribute Data Description Required
Type
uri XPath Pops up a window based on the resolved uri. No
String
storage-location String | Pops up a window based on the given storage location and file name. No
Literal
doc-template-name XPath The name of the document template to use in generating the pdf. No
String
Single The node to put the processed template metadata into. Only when
doc-template-target-metadata | Node doc-template—name
Complex is used.
XPath
matrix-record-no-xpath Single A list of nodes containing matrix record numbers. No
Node
Complex
XPath
db-interface String | The db-interface to use for multiple file query to zip. No
Literal
db-query String The db-query to use for multiple file query to zip. Please Note: Only when
Literal db-interface is
* The query specified must use the datadom-location attribute for XPath binds. The syntax used
<fm:using>...</fm:using> is currently not supported. '
¢ Contexts (i.e. " :{theme} = ") are supported from version 4.04.15 " onwards, and are executed
relative to the db-match location.
¢ The query MUST yield, at least, a column named "BLOB" or "CLOB" and the column "FILENAME".
Optional columns are "MIMETYPE" and "PATH" (relative path within ZIP file).
db-match String | The match path to use for multiple file query to zip. Default: "." No
Literal
zip-archive-name XPath | The name to use for the zip archive that will be offered to the user to download. Default: "Download.zip" |Only when db-match
String is used.
zip-compression-level XPath | The compression level to use, must be between 0-9 or -1. Default: -1 Only when db-match
Integer is used.
window-name String | This allows specifying the name for any child window popups, if a window with that name already exists | No
Literal |itis reused. Defaults to a unique name.
js-win-features String | A comma-separated list of properties for the child window that will display the popup. These are Only when
Literal |javascript properties (see javascript reference manual on 'window' object) that specifiy the window window-name is used.
geometry, etc. Example:
windowProperties="width=200, height=600, resizable, status, toolbar, menubar
file-name String | Pops up a window based on the given storage location and filename. Only when
Literal window-name is used.
Examples
<fm: show—-popup
[uri="XPath"]
| [storage-location="string"]
| [doc—-template—-name="XPath" doc-template-target-metadata="XPath"]
[

matrix

—record-no—xpath="XPath"]

http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Reference:XPath_String
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Reference:XPath_String
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Reference:XPath_String
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Reference:XPath_String
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Reference:Complex_XPath
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Reference:Complex_XPath
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Reference:Complex_XPath
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Reference:Complex_XPath
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Reference:Complex_XPath
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Reference:Complex_XPath
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Reference:Complex_XPath
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Reference:Complex_XPath
http://wiki.fivium.co.uk/mediawiki/FOX%3AReference%3AContexts%23%3A.7Btheme.7D
http://wiki.fivium.co.uk/mediawiki/FOX%3AChangelog%23FOXr4.04.15
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Reference:XPath_String
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Reference:XPath_String
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Reference:XPath_String
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Reference:XPath_String

FOX:Module:show-popup

78

| [db-interface="string" db-query="string" [db-match="string"
zip-archive-name="XPath" zip-compression-level="XPath"]]

[window—name="string" js-win-features="string" file—-name="string"]

/>

FOX:Module:sql

Description

Jm:sql contains SQL DML statements in conjunctions with storage locations, these statements do not use named

binds and as such need numbered binds for each fm:using present instead (:1, :2)

Syntax

<fm:sql>
[SQL DML Statement]
</fm:sql>

Examples

Jm:query, fm:update, fm:insert and fm:delete all contain fm:sql as a sub element to hold SQL DML statements
<fm:sql>

SELECT xml_data FROM portal_folders WHERE id = :1

FOR UPDATE OF xml_data NOWAIT
</fm:sql>

Note

Use of fmc:insert is generally discouraged, the same affect can be accomplished through the use of fm:api in a more

controlled manner.

Related

e fm:query
e fm:update
e fm:insert

¢ fm:delete

FOX:Module:state

FOX:Module:state

Description

Jm:state is a child of fm:state-list, this provides callable presentation and action markup which are scoped to the
state of which they belong. Which means the presentation markup and actions are only available to be called if the

current state matches the state of which those elements are defined.

States can be pushed onto the state stack, replaced, and popped off the state stack. They separate distinguishable
areas of your fox module, this usually consists of different screens that the user will see and interact with. One
example states can be used for is to separate different sections of a large application form, allowing for markup and

actions used in 'Section 1' to be separated with 'Section 2' and so forth. This is just one basic use, many FOX

modules use a multitude of pushing and popping states to achieve their target functionality.

Syntax
<fm:state name="[State Name]" title="[State Title]"
<fm:documentation>. . .</fm:documentation>

<fm:action-list>...</fm:action-list>
<fm:presentation>...</fm:presentation>

</fm:state>

Attribute Summary

State Description

Attribute | Data Type Description Required
name xs:string Name of state, prefixed 'state-' (i.e state-manage) | Yes
title xs:string Human readable title of the state No
description | xs:string Short desscription of the state. No

Examples

The following example shows some important properties of states.

<fm:state-list>

<fm:state name="state-initial" title="Initail State" description="Initial state of the module">

<fm:action-list>
<fm:action name="action-state-push" fox:run=".">
<fm:do>
<fm:state—-push name="state-demo"/>
</fm:do>

</fm:action>

<fm:action name="action-state-replace" fox:run=".">
<fm:do>
<fm:state-replace name="state-demo"/>
</£fm:do>

</fm:action>
</fm:action-list>

<fm:presentation>

FOX:Module:state

80

<fm:set-buffer name="buffer-content">
<fm:action-out name="action-state-push" fox:mode="."/>
<fm:action-out name="action-state-replace" fox:mode="."/>
</fm:set-buffer>
</fm:presentation>
</fm:state>
<fm:state name="state-demo" title="Demo States" description="Demonstates the use of states">

<fm:action-list>

<fm:action name="action-message-name" fox:run=".">
<fm:do>
<fm:alert message="Hi! you're in state: string(:{sys}/state/name/text ())" />
</£fm:do>

</fm:action>

<fm:action name="action-message-title" fox:run=".">
<fm:do>
<fm:alert message="Hi! you're in state: string(:{sys}/state/title/text())" />
</£fm:do>

</fm:action>
<fm:action name="action-pop-state" fox:run=".">
<fm:do>
<fm:state-pop/>
</£fm:do>
</fm:action>
</fm:action-list>
<fm:presentation>

<fm:set-buffer name="buffer-content">

<fm:action-out action-out="action-message-name" fox:mode="."/>
<fm:action-out action-out="action-message-title" fox:mode="."/>
<fm:action-out action-out="action-pop-state" fox:mode="."/>

</fm:set-buffer>
</fm:presentation>
</fm:state>

</fm:state-list>

This is the entry-theme for the above example.

<fm:entry-theme name="new">
<fm:storage-location>sl-main</fm:storage—location>
<fm:state>state-inital</fm:state>
<fm:attach>/*</fm:attach>
<fm:do/>

</fm:entry-theme>

The example above shows two states, state-initial, which is the first state that the module loads into as shown by the
entry-theme example, and state-demo. state-initial will show two links, one for each of the state stack controlling

commands:

* action-state-push pushes state-demo onto the call-stack, the presentation and action elements will take highest

precedence and replace other buffers. This effectively becomes the state the user will now see and interact with.

FOX:Module:state

81

* action-state-replace will do the same as fm:state-push, however will not add to the state stack but rather replace
the current state with the selected state.

state-demo shows how the title and name can be fetched from the :{sys} DOM and how state's can be popped the
state-stack to return to the previous state.

* action-message-name shows how the states internal name can be targeted and set out into a JavaScript alert.

* action-message-title show the same functionality as action-message-name but the human readable form.

* action-pop-state will pop the current state of the state stack, this works if the previous state was loaded using
Jm:push-state. However if the state was loaded using fim:replace, unexpected results can occur. The state
previous to the current state (which replaced the previous state) will become the active state, if no previous state
exists (like in this example) then a FOX error will be raised.

Related

e fm:state-list

e fm:state-push

* fm:state-pop

* fm:state-replace
e fm:presentation

¢ fm:action-list

FOX:Module:state-list

Description

Jm:state-list is a module level element which acts as a container for repeating fim:state elements.

Syntax

<fm:state-list>

<fm:state name="[State Name]">...</fm:state>

</fm:state-list>

Related

¢ fm:module

e fm:state

http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:state-push
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:state-pop
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:state-replace

FOX:Module:statement

82

FOX:Module:statement

Description

Jm:statement is a child element of fin:api and contains an anonymous block of PL/SQL which will get executed
upon calling the command fm:run-api.

Syntax

<fm:statement>
[Anonymous PL/SQL block]

</fm:statement />

Examples

Below is an example of fm:statement containing an anonymous PL/SQL block being used in conjunction with

Jfm:using to read out the sysdate to a temporary location

<fm:api name="api-sysdate">

<fm:statement>
DECLARE

1_sysdate VARCHAR2 (4000) ;
BEGIN

SELECT sysdate ()

INTO 1_sysdate

FROM dual;

:sysdate := 1_sysdate;
END;

</fm:statement>

<fm:using name=":sysdate" datadom-type="string" sqgl-type="varchar" direction="out">:{temp}/SYDATE</fm:using>

</fm:api>

Notes

It's considered good practice to align PL/SQL statements to the left of the module XML, PrettyPrint functions can
often be configured to ignore formatting on the contents of specific tags. This allows other developers to copy and

paste the PL/SQL into Toad without modification or hassle and is generally easier to read.

Related

e fm:api

* fm:run-api

http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:run-api

FOX:Module:storage-location

83

FOX:Module:storage-location

Description

Storage Locations provide FOX with a standard mechanism for accessing/updating units of data. They are a
definition of how and where data is stored and accessed. They differ from fm:query definitions as Fox decides
where, when, and how to use the SQL/DML defined within the Storage Location.

Within the storage location element, you can add an fm:database node, to tell FOX that the data from the Data DOM
has a direct relationship with a database table. The Data DOM would be stored as a Clob or XML column on this
table.

The fm:database syntax has 3 child elements:

e fm:query in which you can write SELECT statements
* fm:update in which you can write UPDATE statements
* fm:insert in which you can write INSERT statements (This is rarely used, most modules will create new records

separately)

Syntax

<fm:storage—-location name="name" xml-storage-type="clob">
<fm:cache-key string="module name :bind">
<fm:using>bind xpath</fm:using>
</fm:cache-key>
<fm:new-document>
<fm:root-element>root</fm: root—-element>
</fm:new-document>
<fm:database>
<fm:query>
<fm:sql>
SQL statement with :bind
</fm:sql>
<fm:using>bind xpath</fm:using>
</fm:query>
<fm:insert>
<fm:sql>
DML statement with :bind
</fm:sql>
<fm:using>bind xpath</fm:using>
</fm:insert>
<fm:update>
<fm:sql>
DML statement with :bind
</fm:sql>
<fm:using>bind xpath</fm:using>
</fm:update>
</fm:database>

</fm:storage-location>

FOX:Module:storage-location

84

Attribute Summary

Attribute Data Description Required
Type
name String | Name of the storage location, this should have a prefix of 'sl' to denote storage location (i.e Yes

sl-search-results).

xml-storage-type | String | clob or binary. Set this attribute based on the underlying storage your XML is being written to. (E.g. No

based on the Oracle STORE AS clause). If you do not set this to binary and the XML is stored as binary,
this will cause problems because the Oracle XML serialiser introduces extra whitespace which FOX is not
expecting. By setting the attribute correctly, the whitespace issue is solved by setting the xm1l : space
attribute on the document's root element to "preserve".

Concepts

A global caching mechanism is used across the FOX System. Data is loaded into the memory cache bucket, which is

identified using a cache key (L.LE. the name of the bucket). All operations are performed on the data held in the

memory cache as this provides best performance. Because the caching mechanism is global across FOX, two

different user sessions, running different modules can access a common unit of data - simply by addressing the same

bucket (L.E. using the same cache key). This means both users can benefit from seeing the common data consistently

and quickly, whilst system memory is optimised as only one version of the data is held.

You can have multiple storage location definitions within a module, but each one should have a unique cache key

and name.

Across modules, the cache key must be unique for discrete data. Common data can however be reused by

engineering a repeatable cache key.

Storage Location is a definition of how and where something is stored

* Defines all database SQL and DML to access a single row of information

* Complex internal caching aids performance and data sharing

When a module is loaded, a cache key is generated. This is used as a name of a memory location to store retrieved
information for that module

It is important to get this correct, as two modules with the same storage location cache key will use the same
memory location (bucket). If different data structures are involved, this is very bad as the two data structures may
be corrupted

A cache key should include some relevant text as well as either a unique bind variable or a bind variable that has
been passed into the module

The cache key for most modules will be the module name, and some bind variable

Storage locations are used for accessing:

* Short term computed lists of values (map-sets, covered next)
 Static lists of values (map-sets)

e Module Data DOM — XML stored in database

* Files stored on the database (e.g. Uploaded Word files)

FOX:Module:storage-location

85

Examples

An example of a storage location for a module called MODO012X that had no variables passed into it and would use a

unique bind variable is:

<fm:storage-location name="main">
<fm:cache-key string="MOD012X :1"> '''(This ':1' is replaced by a unique value populated by FOX)'''
<fm:using using-type="UNIQUE"/>
</fm: cache-key>
<fm:new-document>
<fm:root-element>RO0OT</fm: root—element>
</£fm:new-document>

</fm:storage—-location>

For the same module, but with a variable called ID passed into the module, you would use the following code to

declare the storage location:

<fm:storage—location name="main">
<fm:cache-key string="MOD012X :1">
<fm:using>: {params}/ID</fm:using>
</fm:cache-key>
<fm:new-document>
<fm:root-element>RO0OT</fm: root—element>
</fm:new-document>

</fm:storage-location>

Here is an example of a storage location being used to keeping the :{froot} DOM synchronized to the table

portal_folders for a particular :{params}/P_PF_ID value.

<fm:storage—-location name="main">
<fm:cache-key string="MODULE_NAME:1">
<fm:using>: {params}/P_PF_ID</fm:using>
</fm:cache-key>
<fm:new-document>
<fm:root-element>FOLDER</fm:root—-element>
</£fm:new-document>
<fm:database>
<fm:query>
<fm:sql>
SELECT xml_data FROM portal_folders WHERE id = :1
FOR UPDATE OF xml_data NOWAIT
</fm:sql>
<fm:using>: {params}/P_PF_ID</fm:using>
</fm:query>
<fm:update>
<fm:sql>
UPDATE portal_ folders SET id = id WHERE id = :1
</fm:sql>
<fm:using>: {params}/P_PF_ID</fm:using>

</fm:update>

FOX:Module:storage-location

86

</fm:database>

</fm:storage-location>

As you can see, fin:cache-key is using a value passed in from :{params} to creation a memory location unique to this
module and parameter value used for fast access of :froot} which in turn allows for faster query/updates from the

database.

Jfm:new-document is only used/triggered when fm:database's select statement fails to return a row or fmm:database is
abscent all together. :froot} is then initialised as the as fin:root-element's value. In the above example this would be

<FOLDER/>

Jm:query is the select statement which will initialise :{froot} with the returned xml data. So if the data returned was

<FOLDER>
<DOCUMENT>Banana</DOCUMENT>
<DOCUMENT>Orange</DOCUMENT>
</FOLDER>

:froot} Would be bound to the root element of the return data, which is <FOLDER> and to return all the document
elements in folder the xpath would be :{root})/ DOCUMENT

Jm:update is called whenever a change to the :{froot} occurs, this is often used to fire update triggers which are

missed due LOB's not firing on updates.

Warnings and Caveats

Storage Location / Entry Theme execution order

The storage location cache key is evaluated before the entry-theme's <fm:do/> block. This means that you should
only base a storage location cache key on DOM values that are available prior to entry-theme processing. In practise,
this limits you to using :{params}, :{env}, :{session} and :{user} - as no other DOMs have useful data for

cache-keys at that particular point of code execution.

Sometimes people make the mistake of augmenting data in the entry-theme and using the resultant value in the cache

key. Here is a simplified example.

<fm:storage—location name="main">
<fm:cache-key string="MOD012X :1">
<fm:using>: {theme}/DETAIL_ID</fm:using>
</fm:cache-key>
<fm:new-document>
<fm:root-element>RO0T</fm: root—element>
</fm:new-document>

</fm:storage-location>

1. When the module is called, the cache-key evaluates immediately and resolves to "MODO012X " (the XPath
substituted as :1 has returned no data). Note that if multiple callers attempt to access the module at the same time,
there will be locking contention, as they are all sharing the exact same cache key.

2. The entry-theme <fm:do/> block executes, and populates : {theme }/DETAIL_ID. This results in a different id for
each entry.

3. On the next FOX action click, each user's cache key will evaluate to a unique string, for example "MOD012X 13"
and "MODO12X 14", as the :{theme }/DETAIL_ID element is populated.

FOX:Module:storage-location

87

While this seems innocuous enough, the locking contention can cause problems, especially if the entry-theme

processing takes a long time to complete. Please be aware of the general principle that cache keys should be based on

values available at the point of entry to a module.

Explicit DOM binding

Using the <fm:using using-type="DATA-XMLTYPE"/> bind will cause FOX to write the root DOM's

XML to the storage location twice, as it is already streamed straight into the LOB locator by default. Therefore it is

recommended that you do not use the DATA-XMLTYPE bind, and only use the update statement to set other

columns, such as last update times, etc.

If your storage location XML has XViews on it, an update statement still needs to be executed in order to cause the
XView triggers to fire. A self-update (i.e. SET id = id) will be sufficient for this.

The exception to the above rule is that for binary XML storage locations, the DATA-XMLTYPE bind SHOULD be
used due to a bug with the current JDBC, whereby the DOM is NOT streamed back to the LOB locator. This should

be fixed in a future FOX release. Errors such as this are symptomatic of this error:

Storage Location:

(change number inconsistant)

Here is an example of how to fix the problem:

Update/Query pair do not access the same row/column

Broken

Fixed

<fm:update>
<fm:sql>
UPDATE trainingmgr.xx_plan_app_details
SET last_updated_by Sl
WHERE application_id 22
AND status_control 'C’
</fm:sql>
<fm:using>: {user}/WUA_ID</fm:using>
<fm:using>: {params}/APPLICATION_ID</fm:using>
</fm:update>

<fm:update>
<fm:sql>
UPDATE trainingmgr.xx_plan_app_details
SET xml_data 5l
, last_updated_by
WHERE application_id
AND status_control
</fm:sql>
<fm:using using-type="DATA-XMLTYPE"/>
<fm:using>: {user}/WUA_ID</fm:using>
<fm:using>: {params}/APPLICATION_ID</fm:using>
</fm:update>

32

33
VCV

Related

fm:storage-location-list
fm:cache-key
fm:new-document

fm:database

FOX:Module:storage-location-list

88

FOX:Module:storage-location-list

Description

fm:storage-location-list is a container for fm:storage-location and fm:file-storage-location child elements.

Syntax

<fm:module>
<fm:storage—location-list>
<fm:storage-location>...</fm:storage—-location>
<fm:file-storage-location/>...<fm:file-storage-location>
</fm:storage-location-list>

</fm:module>

Notes

If both fm:storage-location and fm:file-storage-location are contained in fin:storage-location-list then all

Jfm:storage-location child elements must appear before the fm:file-storage-location elements.

Related

* fm:storage-location

* fm:file-storage-location

FOX:Module:table

Description

Jm:table defines rules for insert update and deletes based of an XML tree structure that represents a row in the table.
Basic table information is described as attributes on the root tag, child elements contain information on specific
columns and their relationship identifiers (PRIMARY KEY etc). Based on the root element that fin:run-dml matches
too and the rec element specified within, this statement will either update the table with the new records, remove the
records or insert new records. This is considered legacy code and should not be used in the future, fm:api is a much

better approach.

Examples
<fm:table "TABLE NAME" "No. of columns" ["Insert flag" "Update flag” "Delete flag” "Lock statment” "Delete statement” "Namespace"]>
<£m:map-path "XPath String"/>
<fm:key>Table Column Key</fm:key>
</fm:primary>
<fm:using>XPath Bind</fm:using>#
<fm: for-each/>

</fm:table>

FOX:Module:table

89

Attribute Summary

Attribute Data Type Description
Required
name fm:entered-string | Indentifies the database table to lock and/or maintain Yes
cols xs:positivelnteger | a check sum attribute which must match the number of columns included in the DML interface. It is Yes
hoped the module specifier computes cols from requirements, rather than counting up elements with
{interface }=. attributes in the module specification
ins fm:yn-flag Insert priviledge allowed No
ins fm:yn-flag Update priviledge allowed No
del fm:yn-flag Delete priviledge allowed No
lock-when | xs:string In addition to the DML match tag and the rec-path match tag this tag specifies extra XML search No
conditions to further restrict records for processing
del-when | xs:string In additions to the DML match tag and the rec-path match tag this tag specifies extra XML search No
conditions to further restrict records for processing
namespace | fm:entered-string | Corresponds to ns in the ns:cols attribute of a fox element definition (to map dom columns to database | No
columns)
Examples

<fm:db-interface name="dbint-products">
<fm:table name="PRODUCT_DETAILS" cols="4" ins="N" upd="Y" del="N" >

<fm:map-path/>

<fm:primary>

</fm:table>

</fm:db-interface>

<fm:key>PRODUCT_ID</fm:key>

</fm:primary>

Note that the use of fim:table is unique to this interface, only one fim:table can be contained inside, as demonstated

by the syntax of fm:run-dml

<fm:run-dml interface="dbint-products" upd="Y" match=":{theme}PRODUCT_INFO/PRODUCT"/>

Related

¢ fm:db-interface

e fm:primary

¢ fm:map-path

* fm:key

¢ fm:run-dml

http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:run-dml

FOX:Module:target-path

90

FOX:Module:target-path

Description

Jfm:target-path defines the DOM target for all rows returns by fim:query. Mandatory for all queries returning more

then one row.

Syntax

<fm:target-path match="XPath to DOM target"/>

Attribute Summary

Attribute | Data Type Description Required
Match XPath Location for output of each record returned by the query, location is relative to run-query. More often than Yes
location of | not, fin:run-query will match on a list node (:{theme }/PRODUCT_LIST) fin:target-path is then matched to
DOM individual elements of said query (PRODUCT).
Examples

Given this fm:run-query command.

<fm:run-query interface="dbint-products" query="gry-get-products" ma

and this fm:target-path of the query.

<fm:taget-path match="PRODUCT"/>

The resulting DOM woud look as follows.

<PRODUCT_LIST>

<PRODUCT>Child elements with Data...</PRODUCT>
<PRODUCT>Child elements with Data...</PRODUCT>
<PRODUCT>Child elements with Data...</PRODUCT>

</PRODUCT_LIST>

Related

e fm:query

* fm:run-query

ch=":{temp}/PRODUCT_LIST"/>

http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:run-query

FOX:Module:template

FOX:Module:template

Description

<fm:template> is used to create a general XML structure which can then be referenced and initialized anywhere in

the module. It is commonly used to generate <fm:map-set> key-data XML.

A template can also be initialised using <fm:init>

Attribute Summary

Attribute Data Type Description Required
name Literal String The name of the Template, used as a reference. Yes
Examples

<fm:template-list>
<fm:template name="tmpl-ms—gender">
<map-set>
<rec>
<key>Male</key>
<data>m</data>
</rec>
<rec>
<key>Female</key>
<data>f</data>
</rec>
</rec>
</map-set>
</fm:template>
</fm:template-list>

Related

* <fm:map-set>

http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:init

FOX:Module:template-list

92

FOX:Module:template-list

Description

<fm:template-list> is a container for <fm:template> elements, which are used to create XML templates.

Attribute Summary

None

Examples

<fm:template-list>
<fm:template name="tmpl-ms—-gender">
<map-set>
<rec>
<key>Male</key>
<data>m</data>
</rec>
<rec>
<key>Female</key>
<data>f</data>
</rec>
</rec>
</map-set>
</fm:template>
</fm:template-list>

Related

* <fm:template>

e <fm:map-set>

FOX:Module:title

93

FOX:Module:title

Description

Jm:title is part of fm:header and allows for setting out text which describes your specific fox module. The text
entered is populated as part of the :{sys} DOM under the heading fitle. This in turn is extracted by the LAYOUTILIB

library module, added to a buffer and included as part of your module's html markup.

Syntax

<fm:header>
<fm:title> (Module title text)</fm:title>

</fm:header>

Examples
Given this as the state of the module.
<fm:header>

<fm:title>My Module Title</fm:title>

</fm:header>

This would be the result in :{sys} when accessing that module.
<module>

<title>My Module Title</title>

</module>

This in turn would show on screen as a header with the text contents of fin:title through LAYOUT1LIB's formatting

Which is effectively doing this:

<fm:set-buffer name="buffer-title2">
<fm:expr-out match=":{sys}/module/title"/>
</fm:set-buffer>

This buffer is then included in an appropriate part of the page.

Notes

LAYOUTILIB Ts a formatting library, therefore may be subject to change (or not used at all in your module).

Related

e fm:header

FOX:Module:update

94

FOX:Module:update

Description

Jm:update describes a DML update statement which is triggered upon a change to :{root}. This is typically used to
kick off database level triggers that updates to LOB data miss.

Syntax

<fm:update>
<fm:sql>
[SQL Update Statement]
</fm:sql>
<fm:using>:bind xpath</fm:using>

</fm:update>

Examples

This is a typical update statement used to kick off triggers not targeted by LOB updates. Setting a column to the
value of itself for the locked row (as targeted by the bind).

<fm:update>
<fm:sql>

UPDATE portal_folders SET id = id WHERE id = :1
</fm:sql>
<fm:using>: {params}/P_PF_ID</fm:using>

</fm:update>

There is no need to add in a using-type="DATA-XMLTYPE" bind for the record to be updated with the contents of
the DOM, FOX knows which column to target through the fin:select statement and automatically posts changes from
the DOM to the record. Use of using-type="DATA-XMLTYPE" will duplicate :{root} in storage.

<fm:update>
<fm:sql>
UPDATE portal_folders SET id = id WHERE id = :1
</fm:sql>
<fm:using>: {params}/P_PF_ID</fm:using>
<fm:using using-type="DATA-XMLTYPE"/>
</fm:update>

Related

¢ fm:database
e fm:using

e fm:sql

FOX:Module:using 95

FOX:Module:using

Description

Jm:using appears across a range of FOX FM: module schema markup. It's typical use is to bring in data from a
DOM via the use of bind variables into a PL/SQL or SQL statement. It's exact use is specific to the context in which

it is used.

Syntax

When ancestor is fm:storage-location-list

<fm:using using-type="Using Type">bind XPath location</fm:using>

When ancestor is fm:db-interface-list

<fm:using "Bind name" "Bind XPath location" "SQL Type" "Datadom Type">bind XPath location</fm:using>

Attribute Summary

Attribute Data Type Description Required
using-type « XPATH Type used for context of data passed through fin:using No
* UNIQUE
e STATIC

« DATA-XMLTYPE

« DATA-CLOB

« DATA-BLOB

e FILE-METADATA-XMLTYPE

name Xs:string Name of bind (i.e :document_id) Yes

datadom-location XPath String XPath location of data No

datadom-type ¢ dom XML type of data No
e xs:data

e xs:datatime

e xs:string
sql-type e clob SQL Type of data No
e date
e xmltype
e varchar

Examples
When ancestor is fin:storage-location-list

This will create a unique value, only used as part of fin:cache-key

<fm:using using-type="UNIQUE"/>

Without defining using-type, it is assumed contents of fm:using are of using-type XPATH
<fm:using>: {params}/ID</fm:using>

When ancestor is fim:db-interface-list

datadom-location is not needed when fm:using contains a child text node

FOX:Module:using

96

<fm:using name=":bind">: {root}/DOCUMENT</fm:using>
Is the same as

<fm:using name=":bind" datadom-location=":{root}/DOCUMENT" />

Fox will try and best guess the sql-type and datadom-type that the datadom-location is pointing too. Most text nodes
will be set to xs:string and varchar respectively, however it's usually a good idea to explicitly set types of date
elements as xs:date/xs:datetime and date. If trying to use XML as a type then XMLType and dom are typically used.

<fm:using name=":bind" sgl-type="varchar" datadom-type="xs:string">:{root}/TEXT_CONTENT/text ()</fm:using>
<fm:using name=":bind" sgl-type="date" datadom-type="xs:date">:{root}/DATE_CONTENT</fm:using>
<fm:using name=":bind" sgl-type="xmltype" datadom-type="dom">:{root}/XML_CONTENT</fm:using>

* fm:cache-key
e fm:query

* fm:insert

e fm:update

* fm:lock

e fm:api

FOX:Module:version-desc

Description

Jm:version-desc is a child of fm:header. 1t is used to store description of the current revision of the module, which is

usually filled in via the developer's revision comment in the version control software.

Syntax

<fm:header>

<fm:version-desc>[Version Description]</fm:version-desc>

</fm:header>

Examples

<fm:header>
<fm:version-desc>Query updated to sort result list by ASC</fm:version-desc>

</fm:header>

Related

¢ fm:header

FOX:Module:version-no

97

FOX:Module:version-no

Description

fm:version-no is a child of fmm:header. 1t is used to store a version number for the current revision of the module,

which is usually filled in automatically through version control software.

Syntax

<fm:header>

<fm:version—-no>|[Version Number]</fm:version—-no>

</fm:header>

Examples

<fm:header>

<fm:version—-no>1.34</fm:version-no>

</fm:header>

Related

e fm:header

FOX:Module:view-rule

Description

<fm:view-rule> is used within a <fm:security-list> and can be used to ENABLE a namespace in read-only mode.

The namespace, privilege, state and theme attributes can all contain comma separated conditions.

This provides a way of overriding active namespaces for set-out/menu-out. It is a further final way of filtering the

content of the screen under different conditions.

Attribute Summary

Attribute Data Type Description Required
namespace | Literal String | The namespace for which to enable/disable read only mode. Can be a comma separated list. Yes
operation Literal String | ENABLE or DISABLE the read only rule. Yes
privilege Literal String | The privilege(s) the user must have to view the namespace. Can be a comma separated list. No
state Literal String | The sate(s) the user must be in to view the namespace. Can be a comma separated list. No
theme Literal String | The entry theme(s) the user must be in to view the namespace. Can be a comma separated list. No
xpath XPath String | The XPath test run relative to the root element. If it evaluates to true, the rule is applied. No
rule-ref Literal String | The name of a security-rule whose conditions to implement. No

FOX:Module:view-rule

98

Examples

Generic:

<fm:security-list>
<fm:view-rule "namespace" "ENABLE" ["user privilege" "state" "entry-theme" "XPath" "rule-name"]/>

</fm:security-list>

A view-rule which only allows a user to view the 'department’' namespace when they are in the 'view' entry theme
and hold the privilege DEPARTMENT":

<fm:security-list>
<fm:view-rule namespace="department" operation="ENABLE" privilege="DEPARTMENT" state="state" theme="view"/>

</fm:security-list>

Related

¢ <fm:mode-rule>
* <fm:security-list>

* <fm:security-rule>

FOX:Module:xml-commit

Description

Jm:transaction-procedural-state is now deprecated and ignored by the FOX Engine.

Related

¢ fm:control

http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:mode-rule
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:security-list
http://wiki.fivium.co.uk/mediawiki/index.php?title=FOX:Commands:security-rule

	FOX:Module:MODULE REFERENCE
	FOX:Module:action
	fm:action
	Description
	Optional Attribute Description
	Auto actions
	Notes
	Related

	FOX:Module:action-list
	Description
	Examples
	Notes
	Related

	FOX:Module:api
	Description
	Syntax
	Examples
	Notes
	Related

	FOX:Module:application-title
	Description
	Syntax
	Examples
	Notes
	Related

	FOX:Module:attr
	Description
	Syntax
	Attribute Summary
	Examples
	Related

	FOX:Module:authentication
	Description
	Syntax
	Examples
	Notes
	Related

	FOX:Module:build-notes
	Description
	Syntax
	Examples
	Notes
	Related

	FOX:Module:cache-key
	Description
	Syntax
	Attribute Summary
	Examples
	Notes
	Related

	FOX:Module:comments
	Description
	Syntax
	Examples
	Related

	FOX:Module:control
	Description
	Syntax
	Notes
	Related

	FOX:Module:css
	Description
	Syntax
	Examples
	Related

	FOX:Module:css-list
	Description
	Syntax
	Related

	FOX:Module:current-of-item
	Description
	Related

	FOX:Module:data-mapping
	Description
	Syntax
	Related

	FOX:Module:data-type
	Description
	Syntax
	Related

	FOX:Module:database
	Description
	Syntax
	Examples
	Related

	FOX:Module:db-interface
	Description
	Syntax
	Examples
	Notes
	Related

	FOX:Module:db-interface-list
	Description
	Syntax
	Related

	FOX:Module:delete
	Description
	Syntax
	Examples
	Related

	FOX:Module:description
	Description
	Syntax
	Examples
	Related

	FOX:Module:display-attr-list
	Description
	Syntax
	Related

	FOX:Module:documentation
	Description
	Syntax
	Examples
	Notes
	Related

	FOX:Module:entry-theme
	fm:entry-theme
	Description
	Attribute Summary
	Notes
	Related

	FOX:Module:entry-theme-list
	Description
	Syntax
	Related

	FOX:Module:file-storage-location
	Description
	Syntax
	Attribute Summary
	Schema Widget Syntax
	Examples
	Related

	FOX:Module:for-each-fetch
	Description
	Attribute Summary
	Examples
	Related

	FOX:Module:header
	Description
	Syntax
	Examples
	Related

	FOX:Module:help-text
	Description
	Syntax
	Examples
	Related

	FOX:Module:history
	Description
	Syntax
	Examples
	Related

	FOX:Module:insert
	Description
	Syntax
	Examples
	Note
	Related

	FOX:Module:into
	Description
	Syntax
	Attribute Summary
	Examples
	Related

	FOX:Module:key
	Description
	Syntax
	Examples
	Related

	FOX:Module:library
	Description
	Attribute Summary
	Examples
	Related

	FOX:Module:library-list
	Description
	Attribute Summary
	Examples
	Related

	FOX:Module:lock
	Description
	Related

	FOX:Module:map-path
	Description
	Syntax
	Related

	FOX:Module:map-set
	Description
	Concepts
	Attribute Summary
	Examples
	Related

	FOX:Module:map-set-list
	Description
	Attribute Summary
	Examples
	Related

	FOX:Module:matrix-and
	Description
	Related

	FOX:Module:matrix-author
	Description
	Related

	FOX:Module:matrix-container-record-number
	Description
	Related

	FOX:Module:matrix-date-closed
	Description
	Related

	FOX:Module:matrix-date-created
	Description
	Related

	FOX:Module:matrix-date-registered
	Description
	Related

	FOX:Module:matrix-external-reference
	Description
	Related

	FOX:Module:matrix-into
	Description
	Related

	FOX:Module:matrix-notes
	Description
	Related

	FOX:Module:matrix-or
	Description
	Related

	FOX:Module:matrix-order-by
	Description
	Related

	FOX:Module:matrix-record-number
	Description
	Related

	FOX:Module:matrix-record-title
	Description
	Related

	FOX:Module:matrix-record-type
	Description
	Related

	FOX:Module:matrix-search
	fm:matrix-search
	Parameters
	results-set-size
	results-set-offset

	matrix-order-by Parameters
	direction

	matrix-into Parameters
	name
	target-path

	FOX:Module:mode-rule
	Description
	Attribute Summary
	Examples
	Related

	FOX:Module:module
	Description
	Syntax
	Related

	FOX:Module:name
	Description
	Syntax
	Examples
	Notes
	Related

	FOX:Module:name-space
	Description
	Syntax
	Examples
	Related

	FOX:Module:name-space-list
	Description
	Syntax
	Related

	FOX:Module:new-document
	Description
	Syntax
	Examples
	Related

	FOX:Module:page-size
	Description
	Syntax
	Examples
	Related

	FOX:Module:pagination-definition
	Description
	Syntax
	Examples
	Notes
	Related

	FOX:Module:pagination-definition-list
	Description
	Syntax
	Notes
	Related

	FOX:Module:param
	Description
	Syntax
	Attribute Summary
	Examples
	Notes
	Related

	FOX:Module:param-list
	Description
	Syntax
	Related

	FOX:Module:parameter
	Description
	Syntax
	Related

	FOX:Module:parameter-list
	Description
	Syntax
	Related

	FOX:Module:post-page
	Description
	Syntax
	Examples
	Related

	FOX:Module:pre-condition
	Description
	Syntax
	Examples
	Related

	FOX:Module:pre-page
	Description
	Syntax
	Examples
	Related

	FOX:Module:presentation
	Description
	Attribute Summary
	Examples
	Related

	FOX:Module:primary
	Description
	Syntax
	Examples
	Related

	FOX:Module:query
	fm:query
	Description
	fm:target-path
	fm:select
	fm:using
	fm:storage-location Interaction
	Related

	FOX:Module:refresh-in-background
	Description
	Attribute Summary
	Examples
	Related

	FOX:Module:refresh-timeout-mins
	Description
	Attribute Summary
	Examples
	Related

	FOX:Module:return
	Description
	Syntax
	Attribute Summary
	Notes
	Related

	FOX:Module:return-list
	Description
	Syntax
	Related

	FOX:Module:root-element
	Description
	Syntax
	Examples
	Notes
	Related

	FOX:Module:row-lock
	Description
	Related

	FOX:Module:schema
	Description
	Related

	FOX:Module:security-list
	Description
	Attribute Summary
	Examples
	Example 1
	Example 2

	Related

	FOX:Module:security-rule
	Description
	Attribute Summary
	Examples
	Related

	FOX:Module:select
	Description
	Syntax
	Examples
	Notes
	Related

	FOX:Module:set-buffer
	Description
	Attribute Summary
	Examples
	Related

	FOX:Module:set-page
	Description
	Attribute Summary
	Examples
	Related

	FOX:Module:show-popup
	Schema Location
	Description
	Syntax
	Attribute Summary
	Examples

	FOX:Module:sql
	Description
	Syntax
	Examples
	Note
	Related

	FOX:Module:state
	Description
	Syntax
	Attribute Summary
	Examples
	Related

	FOX:Module:state-list
	Description
	Syntax
	Related

	FOX:Module:statement
	Description
	Syntax
	Examples
	Notes
	Related

	FOX:Module:storage-location
	Description
	Syntax
	Attribute Summary
	Concepts
	Examples
	Warnings and Caveats
	Storage Location / Entry Theme execution order
	Explicit DOM binding

	Related

	FOX:Module:storage-location-list
	Description
	Syntax
	Notes
	Related

	FOX:Module:table
	Description
	Examples
	Attribute Summary
	Examples
	Related

	FOX:Module:target-path
	Description
	Syntax
	Attribute Summary
	Examples
	Related

	FOX:Module:template
	Description
	Attribute Summary
	Examples
	Related

	FOX:Module:template-list
	Description
	Attribute Summary
	Examples
	Related

	FOX:Module:title
	Description
	Syntax
	Examples
	Notes
	Related

	FOX:Module:update
	Description
	Syntax
	Examples
	Related

	FOX:Module:using
	Description
	Syntax
	Attribute Summary
	Examples
	Related

	FOX:Module:version-desc
	Description
	Syntax
	Examples
	Related

	FOX:Module:version-no
	Description
	Syntax
	Examples
	Related

	FOX:Module:view-rule
	Description
	Attribute Summary
	Examples
	Related

	FOX:Module:xml-commit
	Description
	Related

