
PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information.
PDF generated at: Wed, 06 Feb 2013 16:35:44 GMT

Business Process Training

Training:Architecture:Business Process Training Worksheets 1

Training:Architecture:Business Process Training
Worksheets

Business Process Training Worksheets

Introduction
1. Overview
2. Setting up
3. Useful Queries

Workflow Diagrams
1. Workflow Diagrams
2. Planning Application Workflow Diagram

General Concepts
1. BPM Package
2. Workbaskets
3. Business Context
4. Delegations and Process Assignments
5. Business Stages
6. Entry Stages
7. Exit Stages
8. Standard Stages
9. Moving Between Stages
10. Workbasket Actions
11. Action Data
12. Panel Actions
13. Transition Assignments
14. Transition APIs
15. LHS Workbasket Actions
16. Starting a Business Process Routine
17. External Events
18. Putting Into Practice
19. Conditional Stages
20. Sync Stages
21. Process XML
22. Signals
23. Emails

Training:Architecture:Business Process Training Worksheets 2

Advanced Concepts
1. Subroutines
2. Context Switches
3. Contextual Assignments
4. Delay Stages
5. Parallel Processing Pattern
6. Abort Pattern
7. Orphan Stages
8. Conditional Action Sets
9. Action Overlay
10. Refreshing Stage Actions
11. On Stage Tasks
12. Using Process XML Packages

Training:Architecture:Business Process Training
Worksheets:Overview

Overview
The FOX framework includes a Business Process component which can be used to create business processes in
XML without the developer having to worry about how the low-level details of common tasks such as moving
between stages or providing suitable actions to the correct user are carried out.
The Business Process Manager (BPM) has been implemented as a PL/SQL stored package in the database. This
package BPMMGR.BPM_UPDATE, is the engine that interprets the Business Rules and provides the required
services.

The Business Rules for a given application system are grouped together and defined in a Business Process Definition
(BPD) XML file and stored in the BUSINESS_PROCESS_DEFINITIONS table on the database. The
BPM_UPDATE PL/SQL remains static. It is the Business Process Definitions that change for each new application
system.

http://wiki.fivium.co.uk/mediawiki/index.php?title=File:Bpm_concepts_1.png

Training:Architecture:Business Process Training Worksheets:Overview 3

BPD Core Elements
The Business Process Definition (BPD) is an XML file stored in the
BPMMGR.BUSINESS_PROCESS_DEFINITIONS table. It must conform to the
BUSINESS_PROCESS_DEFINITION.xsd XMLSchema, ask a training supervisor for the location of this document.
The BPD is divided up into several sections which will be covered in this training.

The training will go into each of the core elements of the business process shown in the above diagram. These
include:
• The BPD identifiers and description are covered by the elements SHORT_NAME, FULL_NAME, and

DESCRIPTION.
• ASSIGNMENTS: These specify groups of people who interact with the business process.
• PROCESS_STATES: Workflow stages are implemented here. These may be used to control the flow of the

business process or to provide actions to assignments allowing them to interact with the business process.
• TRANSITION_LIST: Transitions define how a business process moves between its stages.
• OPERATION_LIST: This contains an operation to start the business process.
• QUERY_DEFINITION_LIST: SQL queries and PL/SQL anonymous blocks can be defined here to be used

throughout your business process.

http://wiki.fivium.co.uk/mediawiki/index.php?title=File:Img_bpd_schema.png

Training:Architecture:Business Process Training Worksheets:Setting Up 4

Training:Architecture:Business Process Training
Worksheets:Setting Up

Setting Up
The business process makes use of UREFs and teams, so before getting started we need to ensure that these are
setup. Also during the training we will call out to some methods to perform business logic when moving between
stages. These methods have been provided for you so that you do not lose focus on the the business process concepts
being introduced. They will be briefly explained when they are used to ensure that you understand what is taking
place.
Note: where you are required to replace XX with your initials please use capital letters for your initials. In
most cases this does not matter as it is case in-sensitive, but where it does matter capitals are required.

If You Haven't Completed The Fox Training
If you have not completed the FOX training you will need carry out the following steps to setup the data model and
module used in the Planning Application Project.
1. Data model setup

1. Get XX_PLAN_APP_DATA_MODEL.sql from your BPD training directory.
2. Replace all instances of 'xx' with your initials and run the script.

2. Package setup
1. Get 'XX_PLAN_APP.pks' and 'XX_PLAN_APP.pkb'from your BPD training directory.
2. Replace all instances of 'xx' with your initials and compile them on the database server.

3. Grants
1. Get XX_PLAN_APP_POST_PATCH_DATA_MODEL.sql from your BPD training directory.
2. Replace all instances of 'xx' with your initials and run the script.

4. Fox module
1. Get TRAINING_PLAN_APP_EDIT_V5.xml FOX module from your FOX training directory.
2. Replace all instances of 'xx' in the module with your initials.
3. Rename the file to XX_TRAINING_PLAN_APP_EDIT.xml (where XX is your initials) and add the file to the

envmgr.fox_components_training table.
4. N.B. You will also need to make sure OVERLAY_POPUP_LIBRARY and PLANNING_DEC046X_WRAP

exist in fox_components

UREF and Team Creation
The business process makes use of teams and UREFs. It is therefore a prerequisite that you have read and understood
the following training sheets.
• UREFs
• Teams
Once you have read the training material in the above links get the XX_TRAINING_PLAN_APP_TEAM.xml file from
your BPD training directory. Change the XX in the res_type and res_type_title elements in the team XML to your
initials. Add a record to decmgr.resource_types with the res_type set to XX_TRAINING_PLAN_APP_TEAM where
XX is your initials and set the xml_data column to your team XML.

http://wiki.fivium.co.uk/mediawiki/index.php?title=Training:Architecture:UREFs
http://wiki.fivium.co.uk/mediawiki/index.php?title=Training:Architecture:Teams

Training:Architecture:Business Process Training Worksheets:Setting Up 5

Next run the TEAM_SETUP_SCRIPT.sql file located in your BPD training directory. Run the script providing the
initials you used when creating your tables for the Planning Application Training system. Note you will need to run
this script as XVIEWMGR.
This script will carry out the following actions:
1. Create a UREF on your plan_apps table.
2. Create a team for you to use when working with your business process consisting of applicants, viewers, case

managers, documents managers, reviewers, and resource co-ordinators.
3. For each role two resource people will be created with associated web user accounts.
At the bottom of the script there is a query you can run which will show you the login id for each user created and
what role they are in.

Planning Application Package
If you have completed the first section on 'haven't done fox training' then skip this section.
1. Get the XX_PLAN_APP.pks and XX_PLAN_APP.pkb files from your BPD training directory.
2. Replace all instances of XX_ in both the spec and body with the initials you used on your planning application.
3. Compile the package spec followed by the package body.

Login Links
A business process will usually require interaction by more than one user. To simplify moving between user
accounts get the Training Login Homepage.zip file from your BPD training directory and extract the files. Open the
login.xml file for editing and change all instances of xx to your initials. Save your changes. Open the login.xml file
in your preferred browser and add the page as a favourite. This page will allow you to quickly switch between the
user accounts we created as part of your team.

Business Process Definition
1. Get XX_TRAINING_PLAN_APP_BPD_V1.xml from your BPD training directory.
2. Get the business_process_definition schema from BPD training directory and set XMLSPY to validate your local

CodeSource\BusinessProcessDefinitions folder (or whichever folder you will be storing your business process
definition in) against this schema.

3. Rename the XX_TRAINING_PLAN_APP_BPD_V1.xml file to use your initials and change the SHORT_NAME
element within the Business Process Definition also.

4. Insert into bpmmgr.business_processes the short name and an ID (any unique ID will do).
5. Insert into bpmmgr.business_process_definitions the same ID as above in both the id and bp_id columns, sysdate

in start_datetime and leave end_datetime and xml_data blank.
6. Set up clobber to clob your BPD to bpmmgr.business_process_definitions.

Training:Architecture:Business Process Training Worksheets:Useful Queries 6

Training:Architecture:Business Process Training
Worksheets:Useful Queries

Business Process Queries
The following queries will help when debugging business process runs. Save these files as .sql files and run the
queries and APIs from TOAD. Don't worry if you do not understand them or know how to use them right away. It
will become apparent what they do as the business process concepts are explained.

Current Stage and Assignments
The query contained in this file is useful for ascertaining what stages a business process is in and for each stage who
it is assigned to.

Transition, Event and Stage History
This file contains three separate queries.
1. A history of stages the business process has gone through (includes ended stages)
2. A history of events raised by the business process including detailed log information of what occurred
3. A history of transitions a business process has gone through

Call Event and Rest Actions
This file has two anonymous blocks.
1. A call to new_event function. This function allows you to transition a business process from TOAD using an

event label or transition alias.
2. A call to reset_process_actions. This function takes in 1 or more parameters consisting of the stage id, stage label,

or business process definition name. It will recreate the actions for the given stage/business process.

Training:Architecture:Business Process Training Worksheets:Workflow Diagrams 7

Training:Architecture:Business Process Training
Worksheets:Workflow Diagrams

Workflow Diagrams
Before starting on building our business process we first need to have a clear idea of what that process is. We use
Workflow Diagrams to model the business process. These diagrams are created as a result of requirements analysis
and are used by the developer during implementation to create the business process.

Sample Workflow Diagram
The image below is of a Workflow Diagram showing the process that takes place when you order a cup of tea.

We can see from the diagram that the process of ordering a cup of tea goes through a number of stages. At each stage
it waits for an action to be taken before it moves on to the next stage. Depending on what stage it is in the action may
need to be taken by either the Tea Drinker or the Tea Maker.

Standards
When creating a workflow diagram the following standards must be adhered to:
1. Use standard shapes so that the diagram can be understood by all developers. These shapes can be found in your

BPD training directory BPD_SHAPES.vss.
2. Stages are named with a business process mnemonic followed by a number. We generally use a non-consecutive

numbering sequence for the stages with each stage number incrementing by 10. This helps for maintainability as
if we need to add additional stages into the business process after it has been implemented we can keep them in
sequence without having to re-number them all.

3. Transitions are marked up with the stage name followed by a letter in sequence a..z.
4. Only set the style of a shape to 'Marked Up' once it has been implemented in the business process XML. The

following are examples of marked up and not marked up standard stages.

http://wiki.fivium.co.uk/mediawiki/index.php?title=File:Sample_workflow.png

Training:Architecture:Business Process Training Worksheets:Workflow Diagrams 8

Training:Architecture:Business Process Training
Worksheets:Plan App Workflow Diagram

Planning Application Business Process Diagram
Before we start get the TRAINING_PLAN_APP_BUSINESS_PROCESS.vsd file from BPD training directory. There
are two separate business processes defined here.
The business process on the first page Planning Application shows the process from creating a planning application
through to the application being rejected or approved. This is the business process that we will use when looking at
the General Concepts section of the training.
The second page shows another business process that we will use when reviewing our planning application. This
business process will be designed so that it is reusable across multiple business processes. Advanced concepts will
be introduced on this business process.
By the end of the General Concepts training you will have implemented the entire Planning Application business
process, except for the review stage. By the end of the training you will have a complete business process which will
make use of the generic review business process that you will also create.
Save a separate editable copy of the business process. As you go through the training change the style stages and
connectors to the marked up style once they have been fully implemented.

http://wiki.fivium.co.uk/mediawiki/index.php?title=File:Marked_up_business_stage.png

Training:Architecture:Business Process Training Worksheets:BPM Package 9

Training:Architecture:Business Process Training
Worksheets:BPM Package

Overview
The bpmmgr.bpm package provides several functions for getting information relevant to the current business process
run. You can use these when running queries or APIs within your business process.
You may not understand where they are useful now but as you get an idea of the structure of the business process
you should be able to see where they can be used. In the training there are examples of them being used and you will
be required to use some of them when creating your business process definition.

Training:Architecture:Business Process Training
Worksheets:Workbaskets

Introduction
FOX has a generic Workbasket sub-system which is intrinsically bound up with the BPM. This section will explain
what it is and how it works.

Concepts
Fox has a generic Workbasket sub-system which application systems can utilise. As workflow is a repeating theme
across most applications, the workbasket and work flow management is intrinsically bound up with the BPM. Note
that the Workbasket Display has been implemented in Fox Module BPM001X. Manipulation of the workbasket
contents however is strictly managed by the BPM. This ensures all workbasket changes are fully logged and
auditable. Under no circumstances should an application program unit change workbasket data, other than through a
BPM event call.
A workbasket is a logical container of work that can be shared between users (an audience). Workbaskets are
currently scoped to individual users (WUA), system privileges (PRV), or team role instances (RRL) using Universal
References (UREFs). Workbaskets are associated with workbasket actions which are items that appear in a user's
workbasket which they can click on to carry out the work.

When planning to put work into an audience workbasket remember that if the audience changes, this will be
reflected immediately in user workbaskets. E.g. by adding someone to a team they may get new workbasket actions
out of the blue, or by removing someone, actions may disappear inexplicably (from the users viewpoint). In cases
where this is unacceptable it is common practice to put work items into individual user workbaskets by scoping the
workbasket to a WUA.

http://wiki.fivium.co.uk/mediawiki/index.php?title=File:Bpm_concepts_3.png

Training:Architecture:Business Process Training Worksheets:Workbaskets 10

It is possible to create a workbasket action that is associated with multiple workbaskets at the same time. E.g. The
action may be scoped to a workbasket for both a web_user_account and resource_role. This may be because the
work item is always directed to the user that created it (the web_user_account), but also always copied to members
of a given team role. When the workbasket is displayed to users, both the creator and team members will see the
workbasket action. If the individual user just happens to also be a team member, they will still only be presented
with one workbasket action, despite there being two reasons for relating it to this user. So it all makes good sense
and works how you would expect.
The BPM001X (Workbasket) Fox Module merges logical workbaskets into a single workbasket before presenting it
to users. So the end user simply just sees that they have workbasket actions, regardless of which workbasket scope
delivered it to them.
As well as having a scope workbaskets also have a type. This indicates to the BPM001X (Workbasket) Fox Module
where and when the workbasket contents should be displayed. Two generic workbasket types are currently used. A
workbasket type of WORK will display its actions in the large workbasket list displayed in the centre of the screen. A
workbasket type of LHS will display contents in the small menu in the left-hand-side of the display. Other generic
types may be added during future development. As well as the generic types a developer can also define their own
custom types. These can be any VARCHAR2(30) string and are defined in the BPD. Custom types are not displayed
on the BPM001X module, instead you use these types in your own modules to display the actions for that type. This
will be discussed later under the Panel Actions training sheet.

Training:Architecture:Business Process Training
Worksheets:Business Context

Introduction
This section explains what the business context is, how it is used and why it is important.

Concepts
When a business process is started it creates a business routine. This represents the run of the business process. A
business process may have many business routines in progress at the same time. The presents a problem with how
we identify which routine we are working with when interacting with the business process. In order to distinguish
between the different routines of the same business process (or in fact any routine of any business process) we use
the business context.
The business context uniquely identifies a business process routine. This uniqueness is achieved by using UREFS, in
the case below we are using just one UREF (PRIMARY_DATA). If we required more to make each routine unique
then we can add other SUBJECT legs which have a PURPOSE of SECONDARY_DATA or maybe even
TERTIARY_DATA (if we need to use 3 UREFS).
Business Context XML

 <BUSINESS_CONTEXT>

 <CONTEXT>

 <SUBJECT>

 <REF_ID1>1MYUREF</REF_ID1>

 <USE>

 <PURPOSE>PRIMARY_DATA</PURPOSE>

Training:Architecture:Business Process Training Worksheets:Business Context 11

 <PURPOSE>WORKBASKET</PURPOSE>

 </USE>

 </SUBJECT>

 </CONTEXT>

 <CONTEXT_NAME>PLANNING_APPLICATION_ROOT</CONTEXT_NAME>

 </BUSINESS_CONTEXT>

When interacting with the business process we look for business routines that match the PRIMARY_DATA in our
context. If more than one routine is found we then narrow down our options by using the SECONDARY_DATA and
finally, if necessary, the TERTIARY_DATA. The end result should be that we have found a single routine that
matches the business process we are interacting with. This ensures that when a user carries out an action against their
business process routine, their action does not have an effect on any other routines.
BPM Business Context Data Model

The root business context is constructed on create of the routine. During a business process extra data can be added
to the context as and when it is needed for this routine. Child contexts may also be created to uniquely identify parts
of a business routine. Therefore a single business routine may be associated with more than one context. You will
see examples of this when we look at context switches later in the training.

Using the Business Context
As well as being used to uniquely identify the business routine, the UREFs in the business context will be UREFs
applicable to your application. This means that you can access your application's ID from the business process to
allow you to perform application specific functions.
The CONTEXT sub-element can be referenced using :{context} from the business process definition. You can also
you the bpm.context_xml and bpm.set_context_xml methods from within the business process definition to get and
set the context respectively.
A convenience PL/SQL database package UCTX provides a number of useful functions for processing CONTEXT
data. These functions are worth knowing if you are processing a lot of CONTEXT data in your business process.

http://wiki.fivium.co.uk/mediawiki/index.php?title=File:Img_bpm_context_schema.png

Training:Architecture:Business Process Training Worksheets:Delegations and Process Assignments 12

Training:Architecture:Business Process Training
Worksheets:Delegations and Process Assignments

Introduction
This section will introduce you to delegation profiles and process assignments, and how they are used in the business
process.

Concepts
Assignments define a person or groups of people that are used by the business process. The business process
primarily uses them to determine what workbaskets an action should be assigned to, however they can also be used
in other ways such as for sending an email to the users defined by the assignment.
BPM Assignment Data Model

An assignment is scoped to a business routine context. A process assignment is common across all business routine
contexts. This means that if you have a business routine with more than one business context, each business context
will be associated with the same process assignment. To use different assignments with each context we would use a
contextual assignment. These are explained in more detail later in the training.
Business Assignment Detail XML

<ASSIGNMENT>

 <ASSIGNED_UREF_LIST>

 <UREF>1234WUA</UREF>

 </ASSIGNED_UREF_LIST>

 <DELEGATION_PROFILE>

 <DELEGATION>MY_DELEGATION_DL</DELEGATION>

 <DELEGATION_TYPE>CONFIG</DELEGATION_TYPE>

 <ASSIGNMENT_MANDATORY>false</ASSIGNMENT_MANDATORY>

 <MAKE_ASSIGNMENT_ON>NEVER</MAKE_ASSIGNMENT_ON>

 <ASSIGNEE_WHEN_UNASSIGNED_LIST>

 <RESOURCE_ROLE>

 <RES_TYPE>MY_RESOURCE_TYPE</RES_TYPE>

 <ROLE_NAME>MY_ROLE_NAME</ROLE_NAME>

 <NO_CONTEXT/>

 </RESOURCE_ROLE>

 </ASSIGNEE_WHEN_UNASSIGNED_LIST>

 </DELEGATION_PROFILE>

</ASSIGNMENT>

Process assignments are created at the start of the business process. Each assignment will hold information on valid
assignments that can be made to it. This information is held in the delegation profile. The delegation profile will also
contain information about when an assignment is automatically made (if ever) and whether or not an assignment can

http://wiki.fivium.co.uk/mediawiki/index.php?title=File:Img_bpm_assignment_schema.png

Training:Architecture:Business Process Training Worksheets:Delegations and Process Assignments 13

be used by the business process if no assignments have be made to it.
An assignment can be made by scoping the assignment to one or more valid UREFs. In the above example the
assignment has been scoped to the UREF 1234WUA, which will be a web user account of a resource member in role
MY_ROLE_NAME.

Automatically Making Assignments
A delegation can define if and when an assignment is automatically made in the MAKE_ASSIGNMENT_ON element.
This can take the values FIRST CREATE, FIRST USE and NEVER.
1. FIRST CREATE makes an assignment to the users or roles specified in the delegation when the assignment is

created at the start of the business process.
2. FIRST USE makes an assignment to the users or roles specified in the delegation when the assignment is first

used in the business process.
3. NEVER means than an assignment will never automatically be made by the business process. This leaves you to

control when an assignment is made and to who in your business process definition.

Delegation Types
A delegation also has a type. This type can be one of CONFIG or POOL.
1. The CONFIG type will perform no special actions and make assignments only based off what is specified in your

business process definition.
2. The POOL type will make assignments automatically based on a "fairness" algorithm. It is generally used in

conjunction with an automatic FIRST USE assignment to make an assignment to one of the user accounts, roles or
privileges defined in the delegation on the first instance of the assignment being used in the business process.

Delegation Profile's Universal References (UREFs)
A delegation defines the workbaskets that an assignment can be made to in either an ASSIGNEE_LIST or an
ASSIGNEE_WHEN_UNASSIGNED_LIST. These consist of XML markup or a SQL query that will return Universal
References (UREFs) which can be instances of resource roles (RRL), web user accounts (WUA), and system
privileges (PRV). Workbasket actions are defined in your business process and will make use these assignments to
associate them with a workbasket.
If using ASSIGNEE_WHEN_UNASSIGNED_LIST then certain actions can be made available to the UREFs returned
in the ASSIGNEE_WHEN_UNASSIGNED_LIST so long as no assignment has been made. Once an assignment has
been made then only assignee actions will be available to the UREFs the assignment has been made to. E.g. If your
delegation consists of a resource role in an ASSIGNEE_WHEN_UNASSIGNED_LIST then until a specific user in that
role has been assigned then unassigned actions will be available to all users in the role. Once an assignment is made
these actions will no longer be available to either the assigned user or any other user in the role. Only assignee action
will be available to user the assignment has been made to. An additional point to note is that the
ASSIGNEE_WHEN_UNASSIGNED_LIST cannot automatically make assignments, it must always by used in
conjunction with NEVER in the MAKE_ASSIGNMENT_ON element.
The following methods are used to retrieve the UREFs for the delegation:
1. CURRENT_USER retrieves the web user account UREF (WUA) that initiated the current business process event.
2. ROLE_USERS retrieves the web user account UREFs (WUA) that exist for the specified resource role. Once an

assignment has been made as this is scoped to a web user account rather than a resource role changes to the
members in the resource role have no effect on the assignment. See additional note regarding contextual teams.

Training:Architecture:Business Process Training Worksheets:Delegations and Process Assignments 14

3. RESOURCE_ROLE retrieves the UREF for the specified resource role (RRL). Once an assignment is made as
this is scoped to a resource role if a member is removed from the resource role they will lose the workbaskets
scoped to that role and if they are added to the resource role they will gain the workbaskets scoped to the role. See
additional note regarding contextual teams.

4. SYSTEM_PRIV retrieves the UREF for the specified system privilege (PRV). Once an assignment is made as this
is scoped to a system privilege if the privilege is revoked access to the workbaskets scoped to that privilege will
be lost and if the privilege is granted access to the workbaskets scoped to that privilege will be gained.

5. QUERY_NAME allows you to specify a query in the Business Process Definition query list.
6. SQL allow you to define a sql query.
Each row returned by the SQL query defined in the delegation or the Business Process Definition query list must
return a Clob value in the format:

 <WORKBASKET>

 <SCOPE_UREF>WUA|RRL|PRV</SCOPE_UREF>

 </WORKBASKET>

For example:

SELECT

 XMLTYPE(XMLELEMENT("WORKBASKET"

 , XMLELEMENT("SCOPE_UREF", '100RRL')

).getclobval())

FROM dual

Note on contextual teams
If you specify a RESOURCE_ROLE or ROLE_USERS auto-query for a delegation, you may provide additional
information if the resource is contextual (i.e. SCOPED_WITHIN = PARENT).
1. CONTEXT_PURPOSE is the PURPOSE of the UREF within the business context

(PRIMARY_DATA|SECONDARY_DATA|TERTIARY_DATA)
2. USAGE_PURPOSE is the PURPOSE of the UREF as defined in the RESOURCE_USAGES table. Defaults to the

value specified CONTEXT_PURPOSE.
These take the place of the <NO_CONTEXT/> element shown in the example markup below and ensure that the
resource role instance used is the correct one for our team usage.

Assignments and Concurrent Access
We often use the business process to control concurrent access to a work item. For example, given an application we
can use assignments to control who has access to edit that application at any one time. This can help to prevent lost
updates or deadlocks which can occur if multiple users are allowed to edit the application at the same time. We do
this by ensuring that when the assignment is made it is made to only a single web user account (WUA). So we may
have a delegation defined with a resource role, this will control who assignments can be made to. When we actually
make an assignment though we do not make it to the entire role, rather we make it to a single web user account
associated to a member within the role. When doing this we must use the value NEVER for the
MAKE_ASSIGNMENT_ON element. This is so that we can control who the assignment is made to in the Business
Process Definition, rather than allowing the business process to automatically make the assignment in which case it
would make it to the entire role.

Training:Architecture:Business Process Training Worksheets:Delegations and Process Assignments 15

BPD Markup
 <ASSIGNMENTS>

 <DELEGATION_PROFILE_LIST>

 <DELEGATION_PROFILE>

 <DELEGATION>MY_DELEGATION_DL</DELEGATION>

 <DELEGATION_TYPE>CONFIG</DELEGATION_TYPE>

 <ASSIGNMENT_MANDATORY>false</ASSIGNMENT_MANDATORY>

 <MAKE_ASSIGNMENT_ON>NEVER</MAKE_ASSIGNMENT_ON>

 <ASSIGNEE_WHEN_UNASSIGNED_LIST>

 <RESOURCE_ROLE>

 <RES_TYPE>MY_RESOURCE_TYPE</RES_TYPE>

 <ROLE_NAME>MY_ROLE_NAME</ROLE_NAME>

 <NO_CONTEXT/>

 </RESOURCE_ROLE>

 </ASSIGNEE_WHEN_UNASSIGNED_LIST>

 </DELEGATION_PROFILE>

 <DELEGATION_PROFILE>

 <DELEGATION>MY_OTHER_DELEGATION_DL</DELEGATION>

 <DELEGATION_TYPE>POOL</DELEGATION_TYPE>

 <ASSIGNMENT_MANDATORY>true</ASSIGNMENT_MANDATORY>

 <MAKE_ASSIGNMENT_ON>FIRST USE</MAKE_ASSIGNMENT_ON>

 <ASSIGNEE_LIST>

 <ROLE_USERS>

 <RES_TYPE>MY_RESOURCE_TYPE</RES_TYPE>

 <ROLE_NAME>MY_OTHER_ROLE_NAME</ROLE_NAME>

 <NO_CONTEXT/>

 </ROLE_USERS>

 </ASSIGNEE_LIST>

 </DELEGATION_PROFILE>

 </DELEGATION_PROFILE_LIST>

 <PROCESS_ASSIGNMENT_LIST>

 <PROCESS_ASSIGNMENT>

 <ASSIGNMENT>MY_ASSIGNMENT</ASSIGNMENT>

 <ASSIGNMENT_TITLE>Sample resource role assignment</ASSIGNMENT_TITLE>

 <DELEGATION>MY_DELEGATION_DL</DELEGATION>

 </PROCESS_ASSIGNMENT>

 <PROCESS_ASSIGNMENT>

 <ASSIGNMENT>MY_OTHER_ASSIGNMENT</ASSIGNMENT>

 <ASSIGNMENT_TITLE>Sample pool role users assignment</ASSIGNMENT_TITLE>

 <DELEGATION>MY_OTHER_DELEGATION_DL</DELEGATION>

 </PROCESS_ASSIGNMENT>

 </PROCESS_ASSIGNMENT_LIST>

 <CONTEXTUAL_ASSIGNMENT_LIST/>

 <EXTERNAL_ASSIGNMENT_LIST/>

 </ASSIGNMENTS>

This code will create two process assignments, each using a different delegation profile.

Training:Architecture:Business Process Training Worksheets:Delegations and Process Assignments 16

MY_ASSIGNMENT uses the MY_DELEGATION_DL delegation which has an
ASSIGNEE_WHEN_UNASSIGNED_LIST returning an instance of a resource role. This delegation will not
automatically make assignments allowing us to control when an assignment is made and to who in our BPD. This
enables us to provide both unassigned actions to the entire role when no assignment has been made and assignee
actions to the user we make an assignment to.
The second process assignment uses the MY_OTHER_DELEGATION_DL delegation which is of type POOL
meaning that an assignment will be made to one of the users in the resource role on FIRST USE of the assignment.
Note that when using a delegation of type POOL then it must be possible to make an assignment. E.g. using the
above example if the instance of the resource role used (MY_OTHER_ROLE_NAME) has no members then
attempting to make the POOL assignment would result in an application error. To ensure this does not happen you
should only use resource roles for which it is mandatory to have one or more members with POOL delegation types.
Contextual assignments and external assignments have not been specified as these will be explained later in the
training.

Exercises

Exercise 1
Create delegations meeting the following specification:
1. Applicant Delegation

1. Uses the Applicant role in your team to provide a resource role for the delegation
2. Requires an assignment to be made at all times
3. Does not use unassigned actions
4. Does not automatically make assignments

2. Viewer Delegation
1. Uses the Viewer role in your team to provide a resource role for the delegation
2. Does not require an assignment to be made at all times
3. Uses unassigned actions
4. Does not automatically make assignments

3. Case Manager Delegation
1. Uses the Case Manager role in your team to provide a resource role for the delegation
2. Does not require an assignment to be made at all times
3. Uses unassigned actions
4. Does not automatically make assignments

4. Document Manager Delegation
1. Uses the Document Manager role in your team to provide resource role WUAs for the delegation
2. Requires an assignment to be made at all times
3. Does not use unassigned actions
4. Automatically makes an assignment to ONE of the WUAs when the assignment is first used

Training:Architecture:Business Process Training Worksheets:Delegations and Process Assignments 17

Exercise 2
Link each of your delegations to a process assignment.

Training:Architecture:Business Process Training
Worksheets:Business Stages

Overview
Business stages are used to control the flow of the workflow or to provide sets of actions to workbaskets enabling
users to interact with the business process.
BPM Stages Data Model

Each stage will have a stage label which should match the label given to the stage on your workflow diagram. It will
consist of a mnemonic common to all stages in your business process followed by a number. The stages should be
numbered in sequence. We usually increment by 10 for each stage as this helps to keep the stages sequential even if
we insert additional stages at a later point. The stage will also have a title which is used to identify the stage for
reporting and tracking purposes.
As you move between stages on your business process they will be created and ended as required. A stage is scoped
to a business routine context, which is used in conjunction with the stage label to uniquely identify the stage. You
may have more than one instance of the same stage active on the same business routine as long as it is scoped to
different business contexts within that routine allowing it to be uniquely identified by the BPM.
Stages can be marked up as an entry stage, exit stage, standard stage, conditional stage, sync stage or delay stage. We
will go into each of these types in more detail later in the training.

http://wiki.fivium.co.uk/mediawiki/index.php?title=File:Img_bpm_stages_schema.png

Training:Architecture:Business Process Training Worksheets:Entry Stages 18

Training:Architecture:Business Process Training
Worksheets:Entry Stages

Introduction
This section will explain how entry stages are implemented in the business process definition.

Concepts
An entry stage is the start of the business process. There can only be one entry stage for a business process and you
cannot provide a user with any actions on this stage. It requires a single transition, which is automatically run, to
move to the business process on to the next stage. You can define tasks for the business process to undertake during
this transition.
Workflow Markup

BPD Markup

<ENTRY_STAGE_LIST>

 <STAGE>

 <STAGE_LABEL>STAGE1</STAGE_LABEL>

 <STAGE_TITLE>My first entry stage</STAGE_TITLE>

 </STAGE>

</ENTRY_STAGE_LIST>

Exercises
1. Create a entry stage PLNAPP1 for your business process.

http://wiki.fivium.co.uk/mediawiki/index.php?title=File:Img_entry_stage.png

Training:Architecture:Business Process Training Worksheets:Exit Stages 19

Training:Architecture:Business Process Training
Worksheets:Exit Stages

Introduction
This section will explain how exit stages are implemented in the business process definition.

Concepts
When a business process transitions it will create a new stage which once ended will in turn create another new
stage. Exit stages are used to end business stages without moving them into a new stage. On moving into an exit
stage the exit stage itself is then ended, thereby ending that path of the business process.
A business process is complete once all it stages are ended. If a business process has been split into several paths
using a transition fork then each of these paths need to be ended before the routine will be complete.
We use the number 999 for exit stages (reducing by one for each extra stage required 998, 997, etc). In general all
stages can transition to the same end stage. There are exceptions to this rule when working with subroutines which
will be explained later in the training.
Workflow Markup

BPD Markup

<EXIT_STAGE_LIST>

 <STAGE>

 <STAGE_LABEL>STAGE999</STAGE_LABEL>

 <STAGE_TITLE>My first exit stage</STAGE_TITLE>

 </STAGE>

</EXIT_STAGE_LIST>

Exercises
1. Create exit stage PLNAPP999 for your business process.

http://wiki.fivium.co.uk/mediawiki/index.php?title=File:Img_exit_stage.png

Training:Architecture:Business Process Training Worksheets:Standard Stages 20

Training:Architecture:Business Process Training
Worksheets:Standard Stages

Introduction
This section will outline how a standard stage is implemented in the business process definition and how it is used.

Concepts
A standard stage allows users to interact with the business process. It does this by providing sets of actions, each of
which are linked to workbaskets by associating them with one or more assignments.
On the main WORK workbasket each group of stage actions made available to the workbaskets the user can see are
labelled with a description. This description is defined in the ACTION_DESC_STAGE element.
You can optionally define a default status for a standard stage. The status is primarily used by subroutines and we
will explain how it is used in the Subroutines training worksheet. You define the default status of a stage in the
STATUS element which takes either the values ACTIVE or INACTIVE. If not specified the default status is ACTIVE.
Entry stages and conditional stages are always ACTIVE and exit stages are always INACTIVE.
Arguably the important part of a standard stage is the ACTION_SET_LIST. This list contains sets of actions each of
which is associated with one or more workbaskets. These will be explained in more detail later in the training.

Workflow Markup

A standard stage is changed to the marked up format once all the action sets have been fully implemented.

BPD Markup
 <STANDARD_STAGE_LIST>

 <STAGE>

 <STAGE_LABEL>STAGE10</STAGE_LABEL>

 <STAGE_TITLE>My Standard Stage 10</STAGE_TITLE>

 <ACTION_DESC_STAGE>Standard Stage 10</ACTION_DESC_STAGE>

 <ACTION_SET_LIST/> <!-- explained later -->

 </STAGE>

 <STAGE>

 <STAGE_LABEL>STAGE20</STAGE_LABEL>

 <STAGE_TITLE>My Standard Stage 20</STAGE_TITLE>

 <ACTION_DESC_STAGE>Standard Stage 20</ACTION_DESC_STAGE>

 <ACTION_SET_LIST/> <!-- explained later -->

 </STAGE>

 </STANDARD_STAGE_LIST>

http://wiki.fivium.co.uk/mediawiki/index.php?title=File:Img_standard_stage.png

Training:Architecture:Business Process Training Worksheets:Standard Stages 21

This code will define two standard stages. The markup for the stage actions hasn't been specified yet as we will cover
this later in the training.

Exercises
1. Stub each standard stage on the planning application workflow.

Training:Architecture:Business Process Training
Worksheets:Transitions

Introduction
Transitions define how the business process moves between the stages defined in its workflow. This section will
explain how they are used.

Concepts
In order to move between stages the business process definition uses transitions. Transitions can be run by stage
actions presented to the user, conditions on conditional stages, called explicitly in application code or in response to
a signal, or run by the business process automatically for entry and sync stages.

Transition Basics
A basic transition will include a single before stage and a single after stage. On running the transition the following
will take place:
1. The before stage will be ended, along with all its associated workbasket actions
2. The after stage will be created
3. Any assignments used the after stage that have a delegation profile that makes assignment on FIRST USE will be

scoped to the UREFs returned by their delegation profile if they have not been used before.
4. Any workbaskets that need creating for assignments used on the after stage will be created.
5. The after stage's actions will be created and associated with the relevant workbaskets.
One or more tasks may also be performed. You can specify these to occur before, during or after the transition has
taken place. Careful thought needs to be given as to when these should be performed to ensure that the correct
information is available when it is needed. If the transition requires some work to be done whilst the before stage(s)
still exists then use before transition, if the task relies on the existence of the after stage(s) then use after transition. In
most instances carrying out work in transition will be suitable.
Common tasks performed by transitions include:
1. Making assignments
2. Running APIs
3. Sending emails to assignments
We will go into more detail on these tasks later in the training.
Workflow Markup

Training:Architecture:Business Process Training Worksheets:Transitions 22

BPD Markup

<TRANSITION>

 <TRANSITION_LABEL>STAGE10a</TRANSITION_LABEL>

 <MOVE>

 <BEFORE>

 <STAGE_LABEL>STAGE10</STAGE_LABEL>

 </BEFORE>

 <AFTER>

 <STAGE_LABEL>STAGE20</STAGE_LABEL>

 </AFTER>

 </MOVE>

</TRANSITION>

Transition Forks
A transition fork is used when a business process needs to go down two or more separate paths. This enables work to
be done in parallel with transitions or actions taken in one part of the workflow not having any effect on the other
part. A fork is implemented by providing a transition with more than one after stage, each after stage listed will be
created when the transition is run. In order for the business routine to complete every stage must be ended. This
means that at some point we must either end each path or join them back together.
Workflow Markup

BPD Markup

<TRANSITION>

 <TRANSITION_LABEL>STAGE10a</TRANSITION_LABEL>

http://wiki.fivium.co.uk/mediawiki/index.php?title=File:Img_basic_transition.png
http://wiki.fivium.co.uk/mediawiki/index.php?title=File:Img_transition_fork.png

Training:Architecture:Business Process Training Worksheets:Transitions 23

 <MOVE>

 <BEFORE>

 <STAGE_LABEL>STAGE10</STAGE_LABEL>

 </BEFORE>

 <AFTER>

 <STAGE_LABEL>STAGE20</STAGE_LABEL>

 </AFTER>

 <AFTER>

 <STAGE_LABEL>STAGE30</STAGE_LABEL>

 </AFTER>

 </MOVE>

</TRANSITION>

Transition Joins
If we have split a business process into separate paths we can join these paths back together by using a transition
join. A transition join takes multiple before stages and a single after stage. The transition that runs the transition join
is generally named using the highest numbered stage from its before stages excluding any stages that will never
invoke the transition. On being invoked the transition will end each before stage listed and create the after stage
specified.
By default the transition can be invoked by any of the before stages and every before stage has to exist, otherwise an
exception will be raised and the transition will fail. You can override this behaviour by specifying the following
optional attributes:
1. INVOKER_SIBLING defines whether the stage needs to exist as a sibling of the before stage that invoked the

transition. This takes the values MUST-EXIST (default) which will raise an exception if the stage does not exist
when the transition is invoked by another stage and MAY-EXIST which allows it to not exist.

2. INVOKER_THIS defines whether the before stage that raised the transition needs to exist. This takes the values
MUST-EXIST (default) which will raise an exception if the stage does not exist and NOT-INVOKED which is for
before stages that will not invoke this transition.

Workflow Markup

http://wiki.fivium.co.uk/mediawiki/index.php?title=File:Img_transition_join.png

Training:Architecture:Business Process Training Worksheets:Transitions 24

BPD Markup

<TRANSITION>

 <TRANSITION_LABEL>STAGE20a</TRANSITION_LABEL>

 <MOVE>

 <BEFORE>

 <STAGE_LABEL>STAGE10</STAGE_LABEL>

 <INVOKER_THIS>NOT-INVOKED</INVOKER_THIS>

 <INVOKER_SIBLING>MAY-EXIST</INVOKER_SIBLING>

 </BEFORE>

 <BEFORE>

 <STAGE_LABEL>STAGE20</STAGE_LABEL>

 <INVOKER_THIS>MUST-EXIST<INVOKER_THIS>

 <INVOKER_SIBLING>MUST-EXIST</INVOKER_SIBLING>

 </BEFORE>

 <BEFORE>

 <STAGE_LABEL>STAGE30</STAGE_LABEL>

 <INVOKER_THIS>NOT-INVOKED</INVOKER_THIS>

 <INVOKER_SIBLING>MUST-EXIST</INVOKER_SIBLING>

 </BEFORE>

 <AFTER>

 <STAGE_LABEL>STAGE40</STAGE_LABEL>

 </AFTER>

 </MOVE>

</TRANSITION>

In the above example STAGE10 may not exist when the transition is invoked and will never be the stage that invokes
the transition. STAGE20 may invoke the transition and must exist when the transition is invoked. STAGE30 must
also exist when the transition is invoked but will never invoke the transition itself. We have labelled the transition
STAGE20a as that is the only stage that can invoke the transition.

Self Transitions
There are times when you may want to refresh a stage. This is most commonly used when changing between
unassigned and assigned assignments and to create their associated workbasket actions. In order to do this you can
transition a stage back onto itself. An after stage can include the optional element EXISTS which defaults to
MUST-NOT-EXIST. If you want to transition a stage back onto itself you must set the value of this element to
MAY-EXIST.
Workflow Markup

BPD Markup

<TRANSITION>

 <TRANSITION_LABEL>STAGE10a</TRANSITION_LABEL>

 <MOVE>

 <BEFORE>

http://wiki.fivium.co.uk/mediawiki/index.php?title=File:Img_transition_self.png

Training:Architecture:Business Process Training Worksheets:Transitions 25

 <STAGE_LABEL>STAGE10</STAGE_LABEL>

 </BEFORE>

 <AFTER>

 <STAGE_LABEL>STAGE10</STAGE_LABEL>

 <EXISTS>MAY-EXIST</EXISTS>

 </AFTER>

 </MOVE>

</TRANSITION>

Exercises
1. Add the transitions for stages PLNAPP1 and PLNAPP10 to your business process definition. For now do not

worry about the tasks that these stages perform when they are run.
NOTE: Until you have implemented all the tasks performed by a transition do not mark it up as complete on
your workflow diagram.

Training:Architecture:Business Process Training
Worksheets:Workbasket Actions

Introduction
This section explains how workbasket actions are made available to users and what they can do.

Concepts
A standard stage in a business process will provide one or more sets of actions which it makes available to certain
workbaskets. These actions are used to enable users to interact with the business process to perform tasks such as
running FOX source code or transitioning the business process.
BPM Stage Actions Data Model

http://wiki.fivium.co.uk/mediawiki/index.php?title=File:Img_bpm_stage_actions_schema.png

Training:Architecture:Business Process Training Worksheets:Workbasket Actions 26

Action Sets
An action set is uniquely identified for a stage by its mnemonic. This is generally a sequence of numbers or roman
numerals.

Workbasket Assignments
Each action set contains a WORKBASKET_ASSIGNMENT_LIST which contains one or more workbasket
assignments. Each workbasket assignment will be associated with an assignment defined in your business process
and a workbasket type. The assignment defines the workbaskets that the action set is associated with. On entering a
stage workbaskets will be created for each workbasket assignment in an action set if it does not already exist. The
action set will then be created and associated with these workbaskets. If you want your actions to appear on the
central workbasket in BPM001X the workbasket type should be set to WORK.
You can also define an optional element in your workbasket assignment called ASSIGNMENT_GROUP, which takes
one of two values:
1. ASSIGNEE-WHEN-ASSIGNED workbasket assignments will only be created and associated to action sets if the

assignment has been scoped to one or more UREFs. If no assignment has been made then this action set will not
be available to the workbasket assignment.

2. ASSIGNEE-WHEN-UNASSIGNED can be used if your delegation profile uses an
ASSIGNEE-WHEN-UNASSIGNED_LIST. Workbasket assignments with this markup will only be created and
associated to action sets if the assignment has not been scoped to any UREFs. If no assignment has been made
then this action set will be available for all the UREFs returned by the ASSIGNEE-WHEN-UNASSIGNED_LIST in
the delegation profile used by the assignment.

If not specified the default ASSIGNMENT_GROUP is ASSIGNEE-WHEN-ASSIGNED.

Actions
An action set will have one or more associated actions. These are the actions the users will see in their workbaskets
and which they will be able to use to interact with the business process.
An action has an action prompt which will be displayed on the action and an action order which defines the order in
which actions are displayed. The action order must be unique across all actions for the stage.

Action Source Code
You can define action source code for the action to run. This is FOX module code that is run before any transitions
take place. It is often used for calling into a FOX module from the central workbasket, or calling an action in your
module to carry out validation or to create/update data required for a transition that cannot be done in a before
transition API.
When performing validation a common pattern is to use an alert to inform the user if the validation failed and follow
this up by stopping the the transaction from proceeding by throwing an ACTIONBREAK. This will halt the BPM and
prevent any transitions from being run.

<fm:alert message="You cannot do this because of xxxxx"/>

<fm:throw code="ACTIONBREAK" message="Validation failed."/>

Training:Architecture:Business Process Training Worksheets:Workbasket Actions 27

Transition Label
If an action defines a transition label then the targeted transition will run when the action is clicked. The transition
will run after the action source code and any action data (explained later) that is present.

After Transition Source Code
After transition source code can only be present if the action has a transition label. This element defines action code
to be run after the transition has completed.

BPD Markup
<ACTION_SET_LIST>

 <ACTION_SET>

 <ACTION_SET_MNEM>1</ACTION_SET_MNEM>

 <WORKBASKET_ASSIGNMENT_LIST>

 <WORKBASKET_ASSIGNMENT>

 <ASSIGNMENT>EDITOR</ASSIGNMENT>

 <WORKBASKET>WORK</WORKBASKET>

 </WORKBASKET_ASSIGNMENT>

 </WORKBASKET_ASSIGNMENT_LIST>

 <ACTION_LIST>

 <ACTION>

 <ACTION_PROMPT>Edit My Stuff</ACTION_PROMPT>

 <ACTION_ORDER>10</ACTION_ORDER>

 <ACTION_SOURCE_CODE>

 <assign initTarget=":{temp}/MY_ID" expr="substring-before(:{context}/SUBJECT[USE/PURPOSE='PRIMARY_DATA']/REF_ID1, 'MY_UREF_TYPE')"/>

 <call-module module="MY_MODULE" theme="edit" type="modal" params=":{temp}/*"/>

 </ACTION_SOURCE_CODE>

 </ACTION>

 <ACTION>

 <ACTION_PROMPT>Submit My Stuff</ACTION_PROMPT>

 <ACTION_ORDER>20</ACTION_ORDER>

 <TRANSITION_LABEL>STAGE10a</TRANSITION_LABEL>

 <AFTER_TRANSITION_SOURCE_CODE>

 <alert message="Submitted successfully."/>

 </AFTER_TRANSITION_SOURCE_CODE>

 </ACTION>

 </ACTION_LIST>

 </ACTION_SET>

 <ACTION_SET>

 <ACTION_SET_MNEM>2</ACTION_SET_MNEM>

 <WORKBASKET_ASSIGNMENT_LIST>

 <WORKBASKET_ASSIGNMENT>

 <ASSIGNMENT>VIEWER</ASSIGNMENT>

 <ASSIGNMENT_GROUP>ASSIGNEE-WHEN-UNASSIGNED</ASSIGNMENT_GROUP>

 <WORKBASKET>WORK</WORKBASKET>

 </WORKBASKET_ASSIGNMENT>

 </WORKBASKET_ASSIGNMENT_LIST>

Training:Architecture:Business Process Training Worksheets:Workbasket Actions 28

 <ACTION_LIST>

 <ACTION>

 <ACTION_PROMPT>View My Stuff</ACTION_PROMPT>

 <ACTION_ORDER>30</ACTION_ORDER>

 <ACTION_SOURCE_CODE>

 <assign initTarget=":{temp}/MY_ID" expr="substring-before(:{context}/SUBJECT[USE/PURPOSE='PRIMARY_DATA']/REF_ID1, 'MY_UREF_TYPE')"/>

 <call-module module="MY_MODULE" theme="view" type="modal" params=":{temp}/*"/>

 </ACTION_SOURCE_CODE>

 </ACTION>

 </ACTION_LIST>

 </ACTION_SET>

</ACTION_SET_LIST>

The above code shows two action sets. The actions in the first action set will be available to to the UREFs the
EDITOR assignment is scoped to. This action set contains two actions.
1. The first action gets the ID for your application from the business context's primary data UREF and passes this in

as a parameter to your module call.
2. The second action calls a transition to move the workflow on to the next stage and informs the user with a alert

once this has been done.
The actions in the second action set will be available to all the UREFs associated with the delegation profile the
VIEWER assignment uses (so long as the a viewer has not been assigned). This action set has a single action which
again gets the ID for your application before calling into the view theme on your module.

Exercises

Entering Your Module
Create an action set under stage PLNAPP10 with the following specification:
1. Is available to your applicant assignment
2. Is only available when your applicant assignment has been given a scope (is assigned)
3. Is available on the central workbasket
4. Has a single action which will call your planning application module under the edit theme with the parameters

required by your module (i.e. your ID)

Unassigned Workbasket Action
Create an action set under stage PLNAPP10 with the following specification:
1. Is available to your viewer assignment
2. Is only available when your applicant assignment has not been given a scope (is not assigned)
3. Is available on the central workbasket
4. Has a single action which will call your planning application module under the view theme with the parameters

required by your module (i.e. your ID)

Training:Architecture:Business Process Training Worksheets:Workbasket Actions 29

Using Transitions
Create an action set under stage PLNAPP10 with the following specification:
1. Is available to your applicant assignment
2. Is only available when your applicant assignment has been given a scope (is assigned)
3. Is available on the PANEL workbasket (this will be explained later)
4. Has a single action that:

1. Runs the transition PLNAPP10c
2. Runs after transition source code to inform the user their Planning Application has been cancelled and exit the

module

Using Action Source Code
Create an action set under stage PLNAPP10 with the following specification:
1. Is available to your applicant assignment
2. Is only available when your applicant assignment has been given a scope (is assigned)
3. Is available on the PANEL workbasket (this will be explained later)
4. Has a single action that:

1. Calls an action (defined in your FOX module) to validate the application and terminate if the validation fails.
2. Runs the transition PLNAPP10a
3. Runs after transition source code to inform the user their Planning Application has been submitted and exit the

module

Training:Architecture:Business Process Training
Worksheets:Action Data

Introduction
This section will introduce you to the ACTION_DATA element in an ACTION_SET.

Concepts
Action data is defined for an action set, so it is the same for all actions in the action set. This means you need to be
sure that the action data is relevant to all the actions in the action set, if it is not you may need to consider moving
those actions where it is not relevant to a different action set.
Action data is used for four main purposes which are outlined below.

Training:Architecture:Business Process Training Worksheets:Action Data 30

Confirm Dialogs
Confirm dialogs provide a means of pausing the business process when an action is clicked to provide a confirm
dialog to the user that triggered the action. The confirm dialog is displayed before any action code or transitions are
run. If the user selects OK on the confirm dialog the business process will continue to run the action, if the user
selects Cancel the action will terminate.

BPD Markup
<ACTION_SET>

 <WORKBASKET_ASSIGNMENT_LIST>

 ...

 </WORKBASKET_ASSIGNMENT_LIST>

 <ACTION_LIST>

 ...

 </ACTION_LIST>

 <ACTION_DATA>

 <ACTION_CONFIRM>Are you sure you would like to delete this case?</ACTION_CONFIRM>

 </ACTION_DATA>

</ACTION_SET>

Background workbaskets
On the central workbasket you can define filters to change which actions are visible at any one time. When defining
actions in your business process definition they default to the For Attention filter. This is the default view for the
central workbasket.
In the business process you can override the default filter for the actions in the action set. You do this by providing a
value for the ACTION_CATEGORY element under ACTION_DATA. When the actions in this action set are created
they will use the value defined by action category as their filter. This means they will not be viewable in the default
For Attention workbasket. The user will have to change their filter tag to the one set by the action
Action category should generally only be used for actions that are not very important to the user or do not require
immediate action. It can be very easy for users to forget about items in their background workbaskets, thereby
leaving them incomplete for long periods of time. Also some users may not fully understand the filters on the
workbasket leading them to believe their case has been 'lost' as they cannot find the actions for it.

BPD Markup
<ACTION_SET>

 <WORKBASKET_ASSIGNMENT_LIST>

 ...

 </WORKBASKET_ASSIGNMENT_LIST>

 <ACTION_LIST>

 ...

 </ACTION_LIST>

 <ACTION_DATA>

 <ACTION_CATEGORY>My Filter</ACTION_CATEGORY>

 </ACTION_DATA>

</ACTION_SET>

Training:Architecture:Business Process Training Worksheets:Action Data 31

Action Descriptions
All action sets are described by the stage. If you want to add a further description for a particular action set you can
by using the ACTION_DESC_ACTION element under ACTION_DATA. This will append your action set's action
desc to the stage's action desc separated by a comma.

BPD Markup
<ACTION_SET>

 <WORKBASKET_ASSIGNMENT_LIST>

 ...

 </WORKBASKET_ASSIGNMENT_LIST>

 <ACTION_LIST>

 ...

 </ACTION_LIST>

 <ACTION_DATA>

 <ACTION_DESC_ACTION>Description</ACTION_DESC_ACTION>

 </ACTION_DATA>

</ACTION_SET>

Pause Panels
On clicking an action in an action set with a pause panel the pause panel will be activated first and pause the flow of
execution allowing the user to provide information to the business process before proceeding. The main use of a
pause panel is for reassigning a case in order to allow the user to select the web user account the case will be
reassigned to. This is explained in more detail later in the training under Transition Assignments.

Exercises

Add Action Confirms
Add an action confirm dialog for the action sets with your Submit and Cancel Application actions asking the user to
confirm their action.

Set the Action Category
Add an action category for your view application action to move it into a background workbasket.

Add Extra Description
Add an action description to your view application action to specify that it is 'In Progress'.

Training:Architecture:Business Process Training Worksheets:Panel Actions 32

Training:Architecture:Business Process Training
Worksheets:Panel Actions

Introduction
This section will explain what panel actions are and how they are used.

Concepts
As well as workbasket actions which will appear in the central workbasket, the actions in an action set can also be
defined as being panel actions. This allows you to group sets of actions on a stage to include in your application
modules.
A panel action is defined in exactly the same way as a central workbasket action, except instead of using a
workbasket type of WORK or LHS you use the workbasket type PANEL. In fact the workbasket type you use can be
any VARCHAR2(30) string. This allows you to have different groups of actions on the same stage which may then
be used on different screens or set-outs on the same screen.

Including Panel Actions In Your Module
In order to add panel actions to your module you need to know two things:
1. The workbasket type of the actions you want to display.
2. The business stage ID of the stage the panel actions exists on. When a workbasket action is clicked the action

XML is written to the environment DOM. The data from the environment DOM is passed forward on module
calls, so when triggering a workbasket action from the central workbasket that calls into your module (either
directly or indirectly via a chain of module calls) then then that workbasket action's XML will be available. This
XML contains the business stage ID of the workbasket action that was clicked in the element BS_ID as shown
below.

 <WORKBASKET_ACTION>

 <ACTION_MNEM>i.STAGE10.MY_BPD</ACTION_MNEM>

 <CONTEXT>

 <SUBJECT>

 <REF_ID1>1MYUREF</REF_ID1>

 <USE>

 <PURPOSE>PRIMARY_DATA</PURPOSE>

 <PURPOSE>WORKBASKET</PURPOSE>

 </USE>

 </SUBJECT>

 </CONTEXT>

 <CONTEXT_NAME>MY_BPD_ROOT</CONTEXT_NAME>

 <STAGE_LABEL>STAGE10</STAGE_LABEL>

 <STAGE_TITLE>My First Stage</STAGE_TITLE>

 <STAGE_STATUS>ACTIVE</STAGE_STATUS>

 <BS_ID>1128994</BS_ID>

 <TALLY_LIST/>

 </WORKBASKET_ACTION>

Training:Architecture:Business Process Training Worksheets:Panel Actions 33

Unless you transition to another stage this will be the business stage ID that you will need to display your panel
actions.
Using this information you are now ready to add panel actions on to your module. To do this you need to carry out
the following steps:
• Library in FOX module BPM002X which has several actions available for displaying and working with panel

actions.
• Add an element to your schema under theme named WB_PANEL of type WB_PANEL_TYPE. This defines the

XML structure the data on the panel actions will take.

<xs:element name="WB_PANEL" type="WB_PANEL_TYPE"/>

• Add an action that populates the WB_PANEL element with your panel actions. To do you need to init a
:{theme}/WB_PANEL/WB_PANEL_LIST with the workbasket type of your panel actions and
:{theme}/WB_PANEL/BS_ID with the business stage your panel actions are on. Then set a context of panel
targeting :{theme}/WB_PANEL and call the BPM002X action BPM002X-action-refresh-WB-panel which will
retrieve a list of panel actions matching your stage, workbasket type and workbaskets your user is associated with.
An example of this is shown below:

<fm:action name="action-refresh-panel-actions">

 <fm:do>

 <!-- set workbasket type to PANEL -->

 <fm:assign initTarget=":{theme}/WB_PANEL/WB_PANEL_LIST" textValue="PANEL"/>

 <!-- set BS_ID to stage ID of last workbasket action clicked -->

 <fm:assign initTarget=":{theme}/WB_PANEL/BS_ID" expr=":{env}/WORKBASKET_ACTION/BS_ID"/>

 <fm:context-set scope="state" name="panel" xpath=":{theme}/WB_PANEL"/>

 <!-- query out panel actions -->

 <fm:call action="BPM002X-action-refresh-WB-panel"/>

 </fm:do>

</fm:action>

• Call this action from each entry theme that needs to use your panel actions to query your panel action into the
theme DOM.

• Include the buffer BPM002X-wb-panel-buttons-across in each state where you want your panel actions to be
visible. This buffer sets out the panel actions that were retrieved by the BPM002X-action-refresh-WB-panel
action.

<fm:include name="BPM002X-wb-panel-buttons-across" attach=":{theme}/WB_PANEL"/>

Note: In order to get your module to validate you will need to import BPM002X which is where the
WB_PANEL_TYPE is defined.

<xs:import schemaLocation="C:\LOCATION_OF_TRAINING_DIRECTORY\BPM002X.xml"/>

Exercises
Display your panel actions in the state associated with your edit theme on your planning application module.

Training:Architecture:Business Process Training Worksheets:Make Assignment 34

Training:Architecture:Business Process Training
Worksheets:Make Assignment

Introduction
One of the tasks you can carry out in a transition is making an assignment. This section will explain how this is
carried out and when you may want to do it.

Concepts
As explained in the Delegations and Process Assignments training sheet a business process will have one or more
assignments which can be scoped to all of the UREFs provided in the assignment's delegation profile on the first use
of the assignment or on the assignment being created. Alternatively, we can choose to scope the assignment to
specific UREFs in the delegation profile at specific points in the business process.
There are a number of common scenarios in which you may want to scope an assignment to a UREF. These are
outlined below:

Moving To A New Stage
When moving to a new stage on which the assignment is used, if an assignment has not been made yet you may at
this point decide to scope the assignment to one (or more) of the UREFs provided in the assignment's delegation
profile. This is different from the FIRST USE method in the delegation profile which will scope the assignment to all
the UREFs defined in the delegation profile. Additionally, if the delegation profile uses an instance of a resource role
or a system privilege rather than scoping the assignment to these UREFs the UREF we scope the assignment to can
be that of any web user account that is associated with that role or privilege.
This type of assignment is commonly used when the web user account that invoked the transition is a valid web user
account for the assignment. In this case we can scope the assignment to the user that invoked the transition who must
be a valid user for the EDITOR assignment. This means that when the new stage is created they will have access to
all the assignee actions for that assignment.

BPD Markup
<TRANSITION>

 <TRANSITION_LABEL>STAGE1a</TRANSITION_LABEL>

 <MOVE>

 <BEFORE>

 <STAGE_LABEL>STAGE1</STAGE_LABEL>

 </BEFORE>

 <AFTER>

 <STAGE_LABEL>STAGE10</STAGE_LABEL>

 </AFTER>

 </MOVE>

 <IN_TRANSITION>

 <ASSIGNMENT_ASSIGN_LIST>

 <ASSIGNMENT>EDITOR</ASSIGNMENT>

 <CURRENT_USER/>

 </ASSIGNMENT_ASSIGN_LIST>

Training:Architecture:Business Process Training Worksheets:Make Assignment 35

 </IN_TRANSITION>

</TRANSITION>

In this example we have moved from STAGE1 to STAGE10, scoping the EDITOR assignment to the current user
which will be the UREF of the web user account that invoked the transition.

Taking Ownership
At times we may pass a case forward to a stage which requires work to be done by users in another assignment. We
may not know which users associated with the assignment should carry out the work so we cannot scope the
assignment to a particular web user account ourselves. This means that we need to provide all the users associated
with the assignment a way in which to scope the assignment to themselves, allowing the correct user to take control.
In order to do this we need to use unassigned actions, so the delegation profile needs to be setup to allow this by
using the ASSIGNEE_WHEN_UNASSIGNED_LIST. We can then provide an unassigned action to all the users
associated with the assignment which when clicked will scope the assignment to themselves. We can provide this
action by defining an action set with a workbasket assignment for our assignment with an ASSIGNMENT_GROUP
of ASSIGNEE-WHEN-UNASSIGNED. The actions in this action set will then be available to all the UREFs
associated with the assignment until an assignment is made.
In order to scope the assignment to themselves we provide an unassigned action that will invoke a transition which
makes an assignment in transition. This transition will carry out the following actions:
1. End the workbasket actions associated with the stage
2. Run the transition tasks (in this case we will make an assignment in the same way as when moving to a new

stage)
3. Reassociate the stages workbasket actions. As the assignment now has a scope the unassigned actions will not get

re-created, only assigned actions for the assignment will be created.

BPD Markup
<TRANSITION>

 <TRANSITION_LABEL>STAGE10a</TRANSITION_LABEL>

 <MOVE>

 <BEFORE>

 <STAGE_LABEL>STAGE10</STAGE_LABEL>

 </BEFORE>

 <AFTER>

 <STAGE_LABEL>STAGE10</STAGE_LABEL>

 <EXISTS>MAY-EXIST</EXISTS>

 </AFTER>

 </MOVE>

 <IN_TRANSITION>

 <ASSIGNMENT_ASSIGN_LIST>

 <ASSIGNMENT>EDITOR</ASSIGNMENT>

 <CURRENT_USER/>

 </ASSIGNMENT_ASSIGN_LIST>

 </IN_TRANSITION>

</TRANSITION>

Training:Architecture:Business Process Training Worksheets:Make Assignment 36

Reassigning
At times we may want to change the scope of an assignment from one UREF to another. E.g. Say we have a user that
is drafting an application and this requires another user to carry out work on the same application. Rather than
scoping the assignment to both users, allowing them both to edit the application and therefore introducing potential
concurrency issues, we can scope the assignment to one of the users and when required they can request to reassign
the application, selecting another user associated with the assignment to scope the assignment to.
To do this we use a pause panel. On clicking an action with a pause panel the pause panel will be activated first and
pause the flow of execution allowing the user to provide information to the business process before proceeding. In
this instance the information we will be providing to the business process is the web user account of the user we
want to reassign the case to. An action using a pause panel must be implemented as a panel action, it does not work
when placed on the central workbasket.
To use a pause panel no changes need to be made to your FOX module beyond displaying the panel action as all the
work is carried out in BPM002X.
A pause panel is implemented in your business process using the PANEL_ACTION_PAUSE_LIST under the
ACTION_DATA element. To control who the business process can be reassigned to, you provide the pause panel
with the assignment from your business process that is being reassigned.
The action set should have an action that runs a transition that will refresh the stage by using the same stage for the
before and after stages in the transition. This is similar to taking ownership except that you do not make an
assignment in transition as the assignee is provided by the pause panel.

BPD markup
<ACTION_SET>

 <ACTION_SET_MNEM>1</ACTION_SET_MNEM>

 <WORKBASKET_ASSIGNMENT_LIST>

 <WORKBASKET_ASSIGNMENT>

 <ASSIGNMENT>EDITOR</ASSIGNMENT>

 <WORKBASKET>PANEL</WORKBASKET>

 </WORKBASKET_ASSIGNMENT>

 </WORKBASKET_ASSIGNMENT_LIST>

 <ACTION_LIST>

 <ACTION>

 <ACTION_PROMPT>Reassign Case</ACTION_PROMPT>

 <ACTION_ORDER>10</ACTION_ORDER>

 <TRANSITION_LABEL>STAGE10a</TRANSITION_LABEL>

 <AFTER_TRANSITION_SOURCE_CODE>

 <alert message="Your case has been reassigned."/>

 <exit-module/>

 </AFTER_TRANSITION_SOURCE_CODE>

 </ACTION>

 </ACTION_LIST>

 <ACTION_DATA>

 <PANEL_ACTION_PAUSE_LIST>

 <PANEL_ACTION_PAUSE>

 <SELECT_ASSIGNEE_ASSIGNMENT>EDITOR</SELECT_ASSIGNEE_ASSIGNMENT>

 </PANEL_ACTION_PAUSE>

 </PANEL_ACTION_PAUSE_LIST>

Training:Architecture:Business Process Training Worksheets:Make Assignment 37

 </ACTION_DATA>

</ACTION_SET>

Exercises

Assignment When Moving Between Stages
Scope the APPLICANT assignment to the user that started the business process on transition PLNAPP1a.

Taking Ownership
Add an action set to stage PLNAPP40 with the following specification:
1. Is available to your case manager assignment
2. Is only available when your applicant assignment has not been given a scope (is unassigned)
3. Is available on the central workbasket
4. Has a single action which when clicked will scope the case manager assignment to the user that triggered the

action

Reassigning
Add an action set to stage PLNAPP10 with the following specification:
1. Is available to your applicant assignment
2. Is only available when your applicant assignment has been given a scope (is assigned)
3. Is available on the PANEL workbasket
4. Has a single action which will make a reassignment to another web user account for your applicant assignment
5. After making the assignment provides feedback to the user and exit the module

Training:Architecture:Business Process Training Worksheets:Run API 38

Training:Architecture:Business Process Training
Worksheets:Run API

Introduction
A common task to perform in a transition is to run an API specified in your business process. This section will cover
how to specify API's, where they can be run from and how to run them in a transition.

Concepts
You will often have to perform complex application logic when moving between stages in your business process. To
enable you to do this a transition allows you to run an API which can contain either a SQL query, PL/SQL
anonymous block or a number of conditional clauses. These APIs are defined in the business process definition's
QUERY_DEFINITION_LIST.

Query Definition List
The query definition list can contain one or more named query definitions. These query definitions can be used
throughout your business process when running transitions, to define the UREF's for a delegation profile, from
condition clauses, action overlays and on stage events.
A query definition has a name and a SQL block or conditional elements (WHEN|AND|OR|NOT|NO).
The SQL block can consist of a SQL statement or PL/SQL anonymous block. If performing application specific
tasks these will be held in the application's package(s) and the API will make a call to the package in order to carry
out the task. An example of this is shown below.

 <QUERY_DEFINITION>

 <QUERY_NAME>Do Stuff</QUERY_NAME>

 <SQL>

DECLARE

 l_my_id NUMBER := REPLACE(uctx.getrefid1(bpm.context_xml,

'PRIMARY_DATA'), 'MY_UREF');

BEGIN

 my_schema.my_package.do_stuff(

 p_id => l_my_id

);

END;

 </SQL>

 </QUERY_DEFINITION>

The WHEN element defines a conditional statement that must return true or false. It works similarly to the WHERE
clause in a SQL statement. You can make calls to functions in packages or other query definitions comparing the
values returned to return true or false.

 <QUERY_DEFINITION>

 <QUERY_NAME>Check Stuff</QUERY_NAME>

 <WHEN>my_schema.my_package.count_some_stuff(REPLACE(uctx.getrefid1(bpm.context_xml,

Training:Architecture:Business Process Training Worksheets:Run API 39

 'PRIMARY_DATA'), 'MY_UREF'))>0</WHEN>

 </QUERY_DEFINITION>

The AND|OR|NOT|NO elements perform use conditional logic to return a single true or false value. You can use
them to call query definitions that return true or false (are defined with the WHEN element)

 <QUERY_DEFINITION>

 <QUERY_NAME>Check Some More Stuff</QUERY_NAME>

 <AND>

 <QUERY_NAME>Check Stuff</QUERY_NAME>

 <NOT>

 <QUERY_NAME>Check Other Stuff</QUERY_NAME>

 </NOT>

 </AND>

 </QUERY_DEFINITION>

Running an API in Transition
You can run one or more APIs IN|BEFORE|AFTER transition. You do this by specifying the name of the query
definition(s) you want to run.

 <TRANSITION>

 <TRANSITION_LABEL>STAGE10a</TRANSITION_LABEL>

 <MOVE>

 <BEFORE>

 <STAGE_LABEL>STAGE10</STAGE_LABEL>

 </BEFORE>

 <AFTER>

 <STAGE_LABEL>STAGE20</STAGE_LABEL>

 </AFTER>

 </MOVE>

 <IN_TRANSITION>

 <API_LIST>

 <QUERY_NAME>Do Stuff</QUERY_NAME>

 <QUERY_NAME>Do Some More Stuff</QUERY_NAME>

 </API_LIST>

 </IN_TRANSITION>

 <TRANSITION>

Training:Architecture:Business Process Training Worksheets:Run API 40

Exercises

Create Query Definitions
Create two query definitions. Each definition should call the procedure
trainingmgr.xx_plan_app.update_application_status(p_application_id, p_new_status) in your package. One should
provide a status SUBMITTED the other should provide the status CANCELLED for the p_new_status parameter.

Use Query Definitions in Transitions
1. Transition PLNAPP10a should call the query definition that updates your application to submitted.
2. Transition PLNAPP10c should call the query definition that updates your application to cancelled.

Training:Architecture:Business Process Training
Worksheets:LHS Workbasket Actions

Introduction
This section will show you how to make static left hand side workbasket actions available.

Concepts
For most users the workbasket on BPM001X is used as the portal dashboard from where they can jump to ongoing
business processes which require some form of action to be taken by them. On this screen you can also provide users
with actions that appear on the left hand side of the screen which are generally used to perform non-business process
related activities. For these actions you will want them to be visible at all times so long as the user has the relevant
permissions.
In order to get these actions to appear we use a different type of business process that defines static events,
operations and actions. We will generally create a single business process for our application that will define all the
static LHS actions that are to be made available for it. To identify that the business process is used for static LHS
actions you will generally suffix the name with _STATIC (i.e. MY_APPLICATION_STATIC).
Structure

<BUSINESS_PROCESS_DEFINITION>

 <SHORT_NAME>MY_BPD_STATIC</SHORT_NAME>

 <FULL_NAME>My Static BPD LHS</FULL_NAME>

 <DESCRIPTION>Business process to provide LHS workbasket action for my BPD.</DESCRIPTION>

 <STATIC_EVENT_LIST/>

 <OPERATION_LIST/>

 <ACTION_LIST/>

</BUSINESS_PROCESS_DEFINITION>

Training:Architecture:Business Process Training Worksheets:LHS Workbasket Actions 41

Static Events
There is a trigger defined on the business_process_definitions table that fires on insert or update of a business
process definition. This trigger calls a procedure to run any static events defined in the business process. To define a
static event you provide the name of the event as shown in the markup below:
Static Event BPD Markup

<STATIC_EVENT_LIST>

 <STATIC_EVENT>

 <EVENT_LABEL>MY_STATIC_EVENT_LHS</EVENT_LABEL>

 </STATIC_EVENT>

</STATIC_EVENT_LIST>

You can define multiple static events in a single business process. Each event will map to an operation which defines
the work that will be carried out when the event is run.
Note: There is no delete trigger which means that if you need to remove your static business process you should first
update the business process definition and remove the actions and then delete the record.

Operations
For each static event you will define an associated operation. This operation will end and create one or more actions
and define the workbaskets the actions will be made available to.
Operation BPD Markup

<OPERATION_LIST>

 <OPERATION name="MY_OPERATION_LHS">

 <OPERATION_NAME>MY_OPERATION_LHS</OPERATION_NAME>

 <EVENT_LABEL>MY_STATIC_EVENT_LHS</EVENT_LABEL>

 <DESCRIPTION>Left hand side link for xxxx.</DESCRIPTION>

 <NEW_WORKBASKET_LIST>

 <SYSTEM_PRIV wb_type="LHS">MY_PRIVILEGE</SYSTEM_PRIV>

 </NEW_WORKBASKET_LIST>

 <END_ACTION_LIST>

 <ACTION_MNEM use_current_wb_list="true">MY ACTION LHS</ACTION_MNEM>

 </END_ACTION_LIST>

 <NEW_ACTION_LIST>

 <ACTION_MNEM>MY ACTION LHS</ACTION_MNEM>

 </NEW_ACTION_LIST>

 </OPERATION>

</OPERATION_LIST>

The operation is associated with your static event using the EVENT_LABEL.
The NEW_WORKBASKET_LIST defines what workbaskets to make your action(s) available to. As with a delegation
you can define workbaskets to be scoped to resource roles, role users, privileges, or queries. Generally when creating
LHS links we scope them to a privilege. We then give this privilege to the roles which should have access to our
LHS actions. To make the action visible on the LHS workbasket you must define the workbasket type to be LHS.
You do this using the attribute wb_type="LHS" which is defined on the privilege.
On the operation being run we want to end all our workbasket actions (in case they have already been created) and
recreate them. We define the actions to end and create in the END_ACTION_LIST and NEW_ACTION_LIST

Training:Architecture:Business Process Training Worksheets:LHS Workbasket Actions 42

respectively. These should contain the same set of actions to ensure actions are cleaned up correctly before recreating
them. For each action in your end action list your should define the attribute use_current_wb_list="true". This
ensures that you only end actions associated with the workbaskets defined in your operation. If this attribute is
missing all matching actions will be ended regardless of what workbasket they are associated with which is generally
not the desired behaviour. The actions listed here reference actions defined in your business process.

Actions
Operations use actions defined in your business process.
Action BPD Markup

<ACTION_LIST>

 <ACTION>

 <ACTION_MNEM>MY ACTION LHS</ACTION_MNEM>

 <DEFAULT_PROMPT>Launch Application</DEFAULT_PROMPT>

 <COMMENT>Entry into my application</COMMENT>

 <ACTION_SOURCE_CODE>

 <call-module module="MY_APPLICATION" type="modal" theme="new"/>

 </ACTION_SOURCE_CODE>

 </ACTION>

</ACTION_LIST>

Each action will define an ACTION_MNEM which is used by the operation to reference the action. You define a
prompt which is visible to the user and a comment to describe the action. Finally you define your
ACTION_SOURCE_CODE which is FOX module code that will be run when the action is clicked. This will
generally be used to call into a module allowing the user to access those applications for which they have be granted
the relevant privileges.

Exercises
1. Create a static BPD that can be used to launch your planning application FOX module using the create entry

theme.
2. In your operation scope your workbasket to a privilege named XX_TRAINING_PLAN_APP_LHS replacing XX

with your initials.
3. Add your static business process to the business_processes and busines_process_definitions tabls.
4. Grant your privilege to the PLAN_APP_APPLICANT role in your team.

Training:Architecture:Business Process Training Worksheets:Starting Business Process 43

Training:Architecture:Business Process Training
Worksheets:Starting Business Process

Introduction
Now that we have prepared enough of our business process definition we are ready to start the business process. This
section will explain concepts involved in starting a business process.

Concepts
Before you start a business process routine you need at a minimum an entry stage, a standard stage, a transition
between the two and an operation. On starting a business process run a business routine will be created, a business
context will be created and associated with the routine, all process assignments and external assignments (explained
later) will be created and scoped to the business routine context, the entry stage will be created and its sole transition
will be run.

Starting the Routine
A routine of the business process is started by “raising an event”, which is done by calling one of the “new_event”
procedures/functions defined in the bpm_update package. You provide this function with the name of the event that
starts the business process routine and context XML which is used by the event to create the business context. The
context XML should contain the business context you will be using with your business process. You can also include
further elements for the event to use when creating your business context.

--create context and start workflow

SELECT

 XMLELEMENT("EVENT"

 , uctx.createcontext(l_id||'MY_UREF', 'PRIMARY_DATA')

)

INTO l_context

FROM dual;

l_new_event_xml := bpmmgr.bpm_update.new_event_xml(

 p_event_label => 'MY_BPD_CREATE'

, p_wua => p_wua_id

, p_context => l_context

, p_calling_module_code => 'my_package.my_procedure'

, p_calling_comment => 'Create new business routine for MY_BPD.'

);

On starting a business routine the entry stage's transition will be run. This may lead to further subsequent transitions
being run. If any of the after stages in these transitions were marked up with
<RETURN_ENVIRONMENT>true</RETURN_ENVIRONMENT> they will return the workbasket action XML
associated with the stage on completion of the function call (i.e. into the l_new_event_xml variable shown in the
function call above). The code below shows this markup.

<TRANSITION>

 <TRANSITION_LABEL>STAGE1a</TRANSITION_LABEL>

Training:Architecture:Business Process Training Worksheets:Starting Business Process 44

 <MOVE>

 <BEFORE>

 <STAGE_LABEL>STAGE1</STAGE_LABEL>

 </BEFORE>

 <AFTER>

 <STAGE_LABEL>STAGE10</STAGE_LABEL>

 <RETURN_ENVIRONMENT>true</RETURN_ENVIRONMENT>

 </AFTER>

 </MOVE>

</TRANSITION>

In the above example if the transition STAGE1a is run by our event then the workbasket action XML associated with
STAGE10 will be returned by the function.

Operation
The event raised when starting a business process routine is associated with an operation. The operation will define a
query that creates the root business context for the routine using the context XML passed in when raising the event.
A sample operation is shown below.

 <OPERATION>

 <OPERATION_NAME>MY_BPD_CREATE</OPERATION_NAME>

 <EVENT_LABEL>MY_BPD_CREATE</EVENT_LABEL>

 <DESCRIPTION>Entry point for My BPD workflow</DESCRIPTION>

 <NEW_PROCESS_LIST>

 <CALL_QUERY>

 <SQL>

XMLELEMENT("PROCESS"

, XMLELEMENT("PROCESS_SHORT_NAME", 'MY_BPD')

, UCTX.addPurpose(

 UCTX.extractContext(bpm.event_xml, 'PRIMARY_DATA')

 , 'PRIMARY_DATA'

 , 'WORKBASKET'

)

, XMLELEMENT("CONTEXT_NAME", 'MY_BPD_ROOT')

)

 </SQL>

 </CALL_QUERY>

 </NEW_PROCESS_LIST>

 </OPERATION>

This operation will create a new routine with a business context named MY_BPD_ROOT with a single UREF with a
purpose of PRIMARY_DATA.

Training:Architecture:Business Process Training Worksheets:Starting Business Process 45

Panel Actions
A common pattern is to start a case and then immediately enter a module where the case can be worked on. When
entering a module from the workbasket you have the business stage ID available in the :{env} DOM to display any
panel actions you may have. When entering a module from another module after starting your business process the
business stage ID is not available. This means that your panel actions will not be displayed.
To get around this we can use the event XML passed back from the new_event_xml function that we used to call the
event that created the business process routine. The event xml will contain the workbasket action XML of the after
stages marked up with <RETURN_ENVIRONMENT>true</RETURN_ENVIRONMENT> of any transitions that
were run on creating our business process routine. We can return this from our procedure to our calling module. Our
calling module can then pass it in as a parameter when calling the module where the case will be worked on. You
can then place the workbasket action XML into the environment DOM ensuring that the correct business stage ID is
available when you call the action to setup your panel list.
The code below will create our case returning the new ID, context and event XML to the :{temp} DOM.
 <fm:api name="api-create-app">

 <fm:statement>

DECLARE

 l_wua_id NUMBER := :wua_id;

 l_new_id NUMBER;

 l_context XMLTYPE;

 l_event_xml XMLTYPE;

BEGIN

 my_schema.my_package.create_new_case(

 po_new_id => l_new_id

 , po_context => l_context

 , po_event_xml => l_event_xml

);

 :new_id := l_new_id;

 :context := l_context;

 :event_xml := l_event_xml;

END;

 </fm:statement>

 <fm:using name=":wua_id">:{user}/WUA_ID</fm:using>

 <fm:using name=":new_id" direction="out" datadom-type="string" sql-type="varchar" datadom-location=":{temp}/ID"/>

 <fm:using name=":context" direction="out" datadom-type="dom" sql-type="xmltype" datadom-location=":{temp}"/>

 <fm:using name=":event_xml" direction="out" datadom-type="dom" sql-type="xmltype" datadom-location=":{temp}"/>

 </fm:api>

We then use these values when calling into our editing module.
<fm:call-module module="CASE_EDITING_MODULE" theme="edit" type="modal-replace-this-preserve-caller-callbacks-for-exit" params=":{temp}/*"/>

Training:Architecture:Business Process Training Worksheets:Starting Business Process 46

On entry into our module we then copy the workbasket action XML to the :{env} DOM ensuring that the business
stage ID is in place for setting up our panel actions.

<fm:copy from=":{params}/WORKBASKET_ACTION/*" to=":{env}/WORKBASKET_ACTION"/>

One point to note is if you go through multiple stages before returning from the event (E.g. conditional stages or
sync stages), if any of the transitions to these stages are marked up with
<RETURN_ENVIRONMENT>true</RETURN_ENVIRONMENT> then each one of these will return their
workbasket action XML. This may cause problems when you try to display your panel actions as it will not know
which business stage ID to use.

Exercises
1. Add an operation to your business process definition that will create the root business context for your routine.
2. Modify transition PLNAPP1a so that the after stage will return its workbasket action XML.
3. Modify the trainingmgr.(initials)_plan_app.create_new_application function so that as well as creating your

application it starts the business process routine and returns the workbasket action XML to the calling module
along with any other parameters you need. (Note: if you are returning multiple values you will need to change the
function to a procedure with multiple OUT parameters).

4. Modify your module so that it calls the create_new_application procedure and uses the values it returns as
parameters when calling into your editing module.

5. Change your edit entry theme so that it ensures the correct business stage ID is available in the :{env} DOM.
When you enter the edit application module on creating the business process you should have the panel actions you
created earlier displayed. If you don't then check that you have your business stage ID in the :{env} DOM and that
you have correctly implemented the panel actions as shown in the Panel Actions training sheet.

Training:Architecture:Business Process Training Worksheets:External Events 47

Training:Architecture:Business Process Training
Worksheets:External Events

Introduction
Most of the time requests to transition the business process will be requested internally. This section will explain
how to manually transition the business process.

External Transitions
You can use the new_event function in your code when needing to call a transition from outside of the business
process. You can do this in TOAD using the transition name and your business context. You can also use a transition
alias which can be marked up on one or more transitions in your business process. An example of this markup is
shown below.

<TRANSITION>

 <TRANSITION_LABEL>STAGE1a</TRANSITION_LABEL>

 <TRANSITION_ALIAS_LIST>

 <TRANSITION_ALIAS>MY_EXTERNAL_TRANSITION</TRANSITION_ALIAS>

 </TRANSITION_ALIAS_LIST>

 <MOVE>

 <BEFORE>

 <STAGE_LABEL>STAGE1</STAGE_LABEL>

 </BEFORE>

 <AFTER>

 <STAGE_LABEL>STAGE2</STAGE_LABEL>

 </AFTER>

 </MOVE>

</TRANSITION>

The advantage of using a transition alias is that you do not need to know exactly what stage the business process is
in. E.g. suppose we have a business process that could be either stage 1 or 2 and an external event requires us to
move to stage 3. So long as we know the business process will always be in stage 1 or 2 at this point we can place
the same transition alias on each transition from stage 1 to stage 3 and stage 2 to stage 3. We can then raise an event
passing in the transition alias and the correct transition will run.
An example of how to call an event externally is shown below.

DECLARE

 l_dummy XMLSEQUENCETYPE;

 l_context XMLTYPE;

BEGIN

 SELECT

 xmlelement("EVENT"

 , uctx.createcontext(:p_uref, 'PRIMARY_DATA')

Training:Architecture:Business Process Training Worksheets:External Events 48

)

 INTO l_context

 FROM dual;

 l_dummy := bpmmgr.bpm_update.new_event(

 p_event_label => :event_label

 , p_wua => 1

 , p_context => l_context

 , p_calling_module_code => 'pl/sql'

);

END;

The event label can be any one of a transition label, transition alias, or operation (used when starting the business
process). Together the event label and business context should identify a single transition from one stage to another.
This means you cannot use it with a transition alias that maps to multiple active stages in the business process. More
subtly this means that you cannot use it with a transition join as the business process does not know which of the
before stages is the invoking stage.

Use in Debugging
You can use the new_event function to refresh the assignments that have been made on a stage. To do this you can
create a temporary transition that uses the stage as its before and after stage. This will end and recreate the
workbasket actions for that stage. If the transition does not exist you can add it to your business process definition
temporarily and it will be available for you to use immediately, removing it later when it is no longer required.

Training:Architecture:Business Process Training Worksheets:Putting Into Practice 49

Training:Architecture:Business Process Training
Worksheets:Putting Into Practice

Introduction
We will now look to further implement the planning application business process. Ensure that as you go through the
steps below you are changing the markup on your workflow diagram once your have implemented the stages or
transitions and that your new actions are available and working as expected.

Exercises

PLNAPP10
1. Test the workbasket actions for your applicant assignment that we previously implemented. These should include

entering your module, cancelling the business process, submitting the business process and reassigning the
business process.

2. Test the viewer action to enter your module under the view entry theme.

PLNAPP20
1. Add an action for your applicant to view the submitted planning application in a background workbasket

Submitted Applications.
2. Add an action for viewers to view the submitted planning application in a background workbasket Submitted

Applications.

PLNAPP40
1. Add an action for case managers to view the submitted application before anyone has taken ownership of it.
2. Add an action for the case manager that has taken ownership to view the submitted application.
3. Add an action to send the case for review (for now send it to PLNAPP60 as PLNAPP50 is a subroutine which

will be explained later in the training).

PLNAPP50
Allow a case manager to add a decision. To do this you need to:
1. Add a new decision entry theme to your application's FOX module.
2. Show a read only view of your application
3. Add an action that will change the status of your application to APPROVED and another action that will change

the status of your application to REJECTED. You can use the trainingmgr.xx_plan_app.update_application_status
procedure to do this.

4. Add a workbasket action Add Decision that will launch your module using the decision entry theme.

Training:Architecture:Business Process Training Worksheets:Conditional Stages 50

Training:Architecture:Business Process Training
Worksheets:Conditional Stages

Introduction
This section will introduce you to how decision stages are used in the business process.

Concepts
Decision stages are used by the business process when we need to decide which path to take in the workflow
between two or more different paths. Unlike a fork where we will go down every path a decision stage will only ever
take one of the paths.
The path a decision stage takes is controlled by a condition. This condition returns true or false and can take any of
QUERY_NAME|WHEN|AND|OR|NOT|NO elements as defined in the Run API training sheet.
For a decision stage you define a number of cases that could occur. Each of these cases include a transition and a
condition list. If the conditions in the condition list evaluate to true the transition will be run. For each case you can
optionally provide a message to be displayed to the user that invoked the event if the case's condition evaluates to
true. You can also define a transition to be run if all the cases evaluate to false for which you can provide a message
to be displayed if the transition is run.

Workflow Markup

BPD Markup
<CONDITION_STAGE_LIST>

 <STAGE>

 <STAGE_LABEL>STAGE1</STAGE_LABEL>

 <STAGE_TITLE>My First Decision Stage</STAGE_TITLE>

 <CASE_LIST>

 <CASE>

 <TRANSITION_LABEL>STAGE1a</TRANSITION_LABEL>

 <CONDITION_LIST>

 <QUERY_NAME>My Condition Query Definition</QUERY_NAME>

 </CONDITION_LIST>

 <ON_CASE>

 <MESSAGE_LIST>

 <MESSAGE>Case 1 transition run.</MESSAGE>

 </MESSAGE_LIST>

http://wiki.fivium.co.uk/mediawiki/index.php?title=File:Img_decision_stage.png

Training:Architecture:Business Process Training Worksheets:Conditional Stages 51

 </ON_CASE>

 </CASE>

 <CASE>

 <TRANSITION_LABEL>STAGE1b</TRANSITION_LABEL>

 <CONDITION_LIST>

 <WHEN>my_schema.my_package.count_stuff(my_id) = 1</WHEN>

 </CONDITION_LIST>

 <ON_CASE>

 <MESSAGE_LIST>

 <MESSAGE>Case 2 transition run.</MESSAGE>

 </MESSAGE_LIST>

 </ON_CASE>

 </CASE>

 </CASE_LIST>

 <OTHERWISE_TRANSITION_LABEL>STAGE1c</OTHERWISE_TRANSITION_LABEL>

 <ON_OTHERWISE>

 <MESSAGE_LIST>

 <MESSAGE>Otherwise transition run.</MESSAGE>

 </MESSAGE_LIST>

 </ON_OTHERWISE>

 </STAGE>

</CONDITION_STAGE_LIST>

Exercises
1. Add the decision stage PLNAPP70. The condition should check the status of the application. If APPROVED we

go to stage PLNAPP80, if REJECTED we go to stage PLNAPP90, if neither of these we will go back to stage
PLNAPP60. (There are several ways of implementing this. If you so choose you can use a function provided in
your planning application package get_application_status(p_application_id) to retrieve the application status)

2. Provide an appropriate message to the user depending on the transition run.
3. Add a workbasket action to PLNAPP60 to transition the workflow on to PLNAPP70.

Training:Architecture:Business Process Training Worksheets:Sync Stages 52

Training:Architecture:Business Process Training
Worksheets:Sync Stages

Introduction
The following section will introduce you to sync stages and what they are used for.

Concepts
Sync stages are generally used to tidy the workflow diagram, when dealing with transition forks and joins, or to
provide a single set of tasks to a number of transitions that have the same after stage.
A sync stage has no actions and will have a single transition out of it. On entering a sync stage this transition is
automatically called.

Tidying The Workflow Diagram
You may transition to a sync stage to make a workflow diagram clearer. This can help when you have two stages
that are in very different parts of your diagram that need to be linked by a transition. An example of this is in the
SPIRE_BPD_DIAGRAM workflow on the SIEL(S) tab. Here a sync stage S49 is used when transitioning between
stages S3 and S50. As you can see from the diagram drawing a transition between these two stages could make the
diagram harder to understand.

Dealing With Transition Forks and Joins
If your workflow has multiple stages that need to go to the same stage (or stages) you can have the before stages
transition to a sync stage so long as you know that only one of the stages is active at any one time. The sync stage
will then transition to the after stage (or stages) they need to go to. This may be used for many-to-many transitions
where only one of the before stages is active, or for joining together stages after a decision stage where again we
know that only one stage is active.
An example of a many-to-many transition using a sync stage is on the PED_LIC_TRANSACTION workflow where
stages PEDTXN20, PEDTXN26 and PEDTXN28 transition to sync stage PEDTXN29 which subsequently goes to
several after stages. Note that only one of PEDTXN20, PEDTXN26 and PEDTXN28 will be active at any one time.
The sync stage is not joining them together, rather it is simplifying the workflow.
An example of the stages after a decision stage being joined back together is on the PED_LIC_TRANSACTION
workflow where after decision stage PEDTXN105 the stages PEDTXN110 and PEDTXN115 both go to sync stage
PEDTXN116 to join the workflow back together.
Both of these could be represented by transition joins but it may make the diagram clearer and the implementation
easier using a sync stage if we know that only one of the stages will be active and hence that they do not actually
need joining together.
If you need to select the parent context for one of the before stages this is not possible when going directly into a
transition join. Here you may transition to a sync stage when selecting the parent context which subsequently runs
the transition for the join. Parent and child contexts are explained later in the training.

Training:Architecture:Business Process Training Worksheets:Sync Stages 53

Provide Common Tasks
If a number of stages transition to the same after stage and each transition needs to perform the same tasks you can
centrally manage this by having each stage transition to a sync stage. The sync stage will then contain the tasks (i.e.
APIs, emails, assignments) that need to be carried out. This should not be used in place of a transition join. A join
will be used to join together divergent paths in the workflow. A sync stage will not be joining together active paths
as it will only continue the workflow on for the stage that transitions into it, rather it is just used to centrally manage
the tasks the transition will perform.

Workflow Markup

BPD Markup
<SYNC_STAGE_LIST>

 <STAGE>

 <STAGE_LABEL>STAGE1</STAGE_LABEL>

 <STAGE_TITLE>My first sync stage</STAGE_TITLE>

 </STAGE>

</SYNC_STAGE_LIST>

Exercises
1. Implement sync stage PLNAPP90 and the subsequent transition join. The transition should run an API to update

the status of the application to CLOSED.
2. Add a workbasket action for the document manager on PLNAPP80 named create documents that will transition

the workflow on to PLNAPP90. Notice that in this stage you do not have to take ownership but an assignment is
automatically made for you to one of your two document managers. This is due to using an assignment that makes
the assignment for you on FIRST_USE. As it is a POOL assignment, the assignment will be scoped to one of the
ROLE_USERS in the DOCUMENT_MANGER role.

http://wiki.fivium.co.uk/mediawiki/index.php?title=File:Img_sync_stage.png

Training:Architecture:Business Process Training Worksheets:Process XML 54

Training:Architecture:Business Process Training
Worksheets:Process XML

Introduction
The following section will introduce you to the process XML package and how it is used.

Concepts
The process XML package is used to carry out application specific tasks or provide application specific information
for generic components. This is done using UREFs by following a strict naming convention.
A process XML package is created in bpmmgr and uses a name in the format PROCESS_XML_UREFTYPE where
UREFTYPE is substituted with the UREF type of the application that the package will provide application specific
information for.
Each procedure or function in the process XML packages that performs the same function should have the same
name. This means that all a generic component needs to work out in order to call the correct procedure or function
for an application is the package to call. This can be done using dynamic SQL and the applications UREF.

Worked Example
Suppose we have two applications which have a function get_string(my_id) which returns a string that is needed by a
generic component. The generic component needs to work with both applications and run the correct function
depending on which application it is currently processing.
For application one we have defined a UREF type APP1 and for application two we have defined a UREF type
APP2. We can create two packages, BPMMGR.PROCESS_XML_APP1 and BPMMGR.PROCESS_XML_APP2 each
of which will define the function get_string(my_id).
The generic component can then use the application's UREF to call the correct function. The following code shows
an example of how we can do this:
 -- create pl/sql statement to call function

 -- note that the called package is determined dynamically based off the UREF type

 l_plsql := 'BEGIN :out_string := bpmmgr.Process_Xml_'||bpmmgr.uref.getUrefType(l_application_uref)||'.get_string(:in_id); END;';

 -- execute the pl/sql statement

 EXECUTE IMMEDIATE l_Plsql USING

 -- retrieve the returned string

 OUT l_out_string,

 -- pass in the application ID retrieved by removing the UREF type from the application UREF

 IN REPLACE(l_application_uref, bpmmgr.uref.getUrefType(l_application_uref));

In the above code the called package is worked out at runtime depending on the UREF that we are working with.

Training:Architecture:Business Process Training Worksheets:Process XML 55

Using It In The Business Process
The business process makes use of this in several ways. Two common uses are to display application specific
information on the central workbasket and to provide information about your application at the top of your
application's FOX modules.

Workbasket
You can provide additional application specific information to be displayed in the central workbasket by providing a
function in your application's process XML package.

 FUNCTION workbasket(

 p_key VARCHAR2

 , p_xml_params XMLTYPE DEFAULT NULL

) RETURN XMLTYPE

The above function is defined in your process XML package and returns an XMLTYPE with its root element set to
WORKBASKET. The following is a sample of the element that can be included in the XML returned that the
workbasket will set out.

<WORKBASKET>

 <!--Displayed in Transaction / Ref column on the workbasket-->

 <FOLDER_NUMBER/>

 <REF_NUMBER/>

 <WB_ICON/>

 <WB_PROMPT/>

 <WB_HINT/>

 <!--Displayed in Subject / Topic column on the workbasket-->

 <SUBJECT/>

 <TOPIC/>

 <ICTOPIC>

 <I/> <!--image url-->

 <P/> <!--image prompt-->

 <H/> <!--image hint-->

 </ICTOPIC>

 <!--Displayed in Company column on the workbasket-->

 <COMPANY/>

 <ICCOMPANY>

 <I/> <!--image url-->

 <P/> <!--image prompt-->

 <H/> <!--image hint-->

 </ICCOMPANY>

 <!--Displayed in Status / Date column on the workbasket-->

 <STATUS/>

 <ICSTATUS>

 <I/> <!--image url-->

 <P/> <!--image prompt-->

 <H/> <!--image hint-->

 </ICSTATUS>

 <DATE/>

Training:Architecture:Business Process Training Worksheets:Process XML 56

</WORKBASKET>

Context Header
You can include a header on your FOX modules to show information about your application.

 FUNCTION context_header(

 p_key VARCHAR2

 , p_xml_params XMLTYPE DEFAULT NULL

) RETURN XMLTYPE

The above function will return an XMLTYPE with contextual information about your application. The root element
is CONTEXT and it can contain up to six SUBJECT elements under it.

<CONTEXT>

 <SUBJECT>

 <VALUE/> <!-- defines the text displayed -->

 <DESC/> <!-- defines the text prompt -->

 <USE/> <!-- defines where it will be displayed in the grid-->

 </SUBJECT>

</CONTEXT>

The context header is displayed in a 2 x 3 grid. The USE element defines where in the grid the data is displayed
taking the values shown in the grid below.

A1 B1 C1

A2 B2 C2

To query the context information into your module you need to have libraried in LAYOUT1 and call an API to
retrieve the context header XML. You can make use of the bpmmgr.uref.getprocessedxml(p_uref, p_result_type)
function to do this as shown in the API call below:
<fm:api name="api-getContextData">

 <fm:statement>

BEGIN

 :result := appenv.uref.getprocessedxml(

 p_uref => :uref

 , p_result_type => 'context_header'

);

END;

 </fm:statement>

 <fm:using name=":result" datadom-type="dom" sql-type="xmltype" direction="out" datadom-location=":{theme}/CONTEXT"/>

 <fm:using name=":uref">:{params}/CONTEXT/SUBJECT[USE/PURPOSE='PRIMARY_DATA']/REF_ID1</fm:using>

</fm:api>

Training:Architecture:Business Process Training Worksheets:Process XML 57

Exercises

Workbasket Data
1. Create a process_xml package for your UREF type.
2. Add the workbasket(p_key, p_xml_params) function to it, returning an XML structure with relevant data from

you application.

Context Header
1. Add the context_header(p_key, p_xml_params) function to your process_xml package, returning an XML

structure with relevant data from you application.
2. Add an API in your module to retrieve the context header.
3. Call your API on entry into your module.

Training:Architecture:Business Process Training
Worksheets:Signals

Introduction
This section will introduce you to signals and how they are used in the business process.

Concepts
A signal can be used to raise an event for all transitions that are triggered by that signal. Unlike a transition alias a
signal can be used to transition multiple stages, the stages can exist either in the same business process or another
business process.
A signal is raised by making a call to the bpm_update.signal function passing in the name of the signal, the ID of the
root business context of the routine that is raising the signal, and the ID of the root routine that raised the signal. The
root business context and routine can be obtained through the BPM package.
Signals are generally raised when a transition in a business process requires other transitions to be fired. In this case
the signal is defined as a query definition and it is called as one of the tasks done by the transition. They are
especially useful when you do not know exactly which transitions need to be called and there may be zero, one or
more transitions so a transition alias, which must match exactly one transition, is not suitable.
To receive a signal a transition is marked up as being invoked by that signal. On a signal being raised the BPM will
look for any active stages that have transitions that are invoked by the signal that was raised. These transitions may
exist in the same business process routine, the same business process in a different routine, or an entirely different
different business.

Training:Architecture:Business Process Training Worksheets:Signals 58

BPD Markup
Raising a signal

<TRANSITION>

 <TRANSITION_LABEL>STAGE1a</TRANSITION_LABEL>

 <MOVE>

 <BEFORE>

 <STAGE_LABEL>STAGE1</STAGE_LABEL>

 </BEFORE>

 <AFTER>

 <STAGE_LABEL>STAGE2</STAGE_LABEL>

 </AFTER>

 </MOVE>

 <IN_TRANSITION>

 <API_LIST>

 <QUERY_NAME>Signal Something Happened</QUERY_NAME>

 </API_LIST>

 </IN_TRANSITION>

</TRANSITION>

<QUERY_DEFINITION>

 <QUERY_NAME>Signal Something Happened</QUERY_NAME>

 <SQL>

DECLARE

 l_result XMLSequenceType;

BEGIN

 l_result := bpm_update.signal(

 p_signal => 'SIGNAL_SOMETHING_HAPPENED'

 , p_seed_bc_id => bpm_update.get_parent_bc_id(bpm.ROOT_CONTEXT)

 , p_seed_br_id => bpm.ROOT_ROUTINE

);

END;

 </SQL>

</QUERY_DEFINITION>

Receiving a signal

<TRANSITION>

 <TRANSITION_LABEL>STAGE50a</TRANSITION_LABEL>

 <MOVE>

 <BEFORE>

 <STAGE_LABEL>STAGE50</STAGE_LABEL>

 <INVOKER_SIGNAL>MUST-EXIST</INVOKER_SIGNAL>

 <AUTO_INVOKE_FOR>

 <SIGNAL>SIGNAL_SOMETHING_HAPPENED</SIGNAL>

 </AUTO_INVOKE_FOR>

 </BEFORE>

 <AFTER>

 <STAGE_LABEL>STAGE60</STAGE_LABEL>

Training:Architecture:Business Process Training Worksheets:Signals 59

 </AFTER>

 </MOVE>

</TRANSITION>

Workflow Markup
Raising a signal

Receiving a signal

Exercises
1. Implement workbasket actions on stages PLNAPP40 and PLNAPP60 to return the application to the applicant.

They should have the following properties:
1. Provide a confirm dialog to the user.
2. Implement the PLNAPP40b and PLNAPP60b transitions respectively.
3. Raise the AMEND_APPLICATION signal in transition.

2. Implement transition PLNAPP20a to be invoked on receiving the AMEND_APPLICATION signal.

http://wiki.fivium.co.uk/mediawiki/index.php?title=File:Img_signal_send.png
http://wiki.fivium.co.uk/mediawiki/index.php?title=File:Img_signal_receive.png

Training:Architecture:Business Process Training Worksheets:Emails 60

Training:Architecture:Business Process Training
Worksheets:Emails

Introduction
The following section will show how you can send emails from the business process.

Concepts
As well as running APIs and making assignments another common task that you may want to perform during a
transition is to send an email to one or more assignments or a custom group of users. The business process contains
markup that allows you to send basic emails to targeted recipients.

BPD Markup
<EMAIL_LIST>

 <EMAIL>

 <EMAIL_ASSIGNMENT_LIST>

 <WORKBASKET_ASSIGNMENT>

 <ASSIGNMENT>MY_ASSIGNMENT</ASSIGNMENT>

 <ASSIGNMENT_GROUP>ASSIGNEE-WHEN-UNASSIGNED</ASSIGNMENT_GROUP>

 </WORKBASKET_ASSIGNMENT>

 </EMAIL_ASSIGNMENT_LIST>

 <EMAIL_USER_LIST>

 <QUERY_NAME>Get Email Users</QUERY_NAME>

 </EMAIL_USER_LIST>

 <SHOW_COPY_RECIPIENTS>true</SHOW_COPY_RECIPIENTS>

 <SUBJECT>

 <SUFFIX_TEXT>New Work Item</SUFFIX_TEXT>

 </SUBJECT>

 <BODY>

 <SIMPLE_CONTENT>Email body goes here.</SIMPLE_CONTENT>

 </BODY>

 </EMAIL>

</EMAIL_LIST>

Email recipients
As shown in the above markup we can specify the recipients for an email either by using workbasket assignments or
through the EMAIL_USER_LIST. Workbasket assignments work in much the same way as for action sets, except you
do not define a workbasket type. The EMAIL_USER_LIST is defined using the same markup as the delegation
assignment markup. It can accept
CURRENT_USER|ROLE_USERS|RESOURCE_ROLE|SYSTEM_PRIV|QUERY_NAME|SQL. These are explained on
the Delegations and Process Assignments worksheet.

Training:Architecture:Business Process Training Worksheets:Emails 61

Email Subject
The email subject is defined in your process_xml package. You can define a special function with the signature
email_subject_prefix(p_key IN VARCHAR2, p_xml_params IN XMLTYPE DEFAULT NULL) RETURN VARCHAR2
to return a string to use as the email subject. If this function is not defined then the subject defaults to using the
FOLDER_NUMBER, REF_NUMBER and TOPIC from your workbasket query. If the workbasket query is also not
defined then the business process will raise an application error. You can provide additional text to be placed as a
suffix to the subject returned by process_xml.

Email body
The email body can take either plain text using the SIMPLE_CONTENT element, or you can provide an HTML
email body by using the HTML_CONTENT element instead. This will allow you to use HTML tags within your
email body.

DEV Emails
You can view emails that would be sent via the View Portal Emails link in the Admin Console (use login cfbrown to
access the admin console). Alternatively, you can view the email subject and body in the text_attachment column of
the portalmgr.transmission_content table. If your email has just gone out you can generally find it easily by sorting
the mail_id column in descending order and looking at the most recent emails sent.

Exercises

Add Emails to BPD
1. Send an email informing the applicant the application has been returned on transition PLNAPP20a.
2. Send an email informing the applicant their application was rejected on PLNAPP70b.
3. Send an email informing the applicant their application was approved on PLNAPP80a.

Provide Custom Subject
1. Add a procedure to your process_xml package to provide a custom subject.
2. Look either in the admin console or portalmgr at the email and compare the email subject. You should see in the

earlier emails that the subject was constructed from the data returned by the process_xml_xxx.workbasket()
function and the later emails used your custom string. For both emails part of the subject prefix is fixed whatever
method you used.

Training:Architecture:Business Process Training Worksheets:Subroutines 62

Training:Architecture:Business Process Training
Worksheets:Subroutines

Introduction
The following section will introduce subroutines and how they are used in the business process.

Concepts
You may find at times that a subset of a business processes activities are common to more than one business process.
Rather than implementing the same activities in many business processes it may be possible in these instances to
extract the similar activities out to make their own business process which can be reused across many different
business processes.
This is done through the use of subroutines. A subroutine is defined in much the same way as a standard business
process, except that it allows you to pass in assignments and tallies (tallies are explained later in the training) from its
superroutine (the routine that invoked it). It can also provide feedback to its superroutine on completion of the
routine.

Scenario
We have identified a need for our planning application to undergo a review before a decision is made. We currently
have a very similar form of review taking place in a business process for an HR application. As this is a common
requirement that may be used again in future business processes we have decided that instead of duplicating the code
to carry out the review in our planning application we will create a new generic review business process. It should be
possible for the review business process that we create to be implemented by our planning application business
process, replace the review in the business process for our HR application, and be reused in future applications that
are developed as required.

External Assignments
As a subroutine is an extension of another business process you may want to use the same assignments from your
superroutine in your subroutine. For example, in our generic review process suppose we have a review manager
whose responsibility it is to allocate the reviewers. We want the review manager to be the same as our case manager
from our planning application business process. We could create a new process assignment in our subroutine for our
case manager but that would restrict its ability to be reused as the review manager assignment would then be scoped
to our planning application team's case manager role. Additionally we would then also need some way to keep the
assignments in sync, so that if the case manager reassigned the case to another case manager the review manager
assignment would also be updated.
External assignments allow us to pass in a reference to an assignment in our superroutine to our subroutine. This
allows us to use different assignments in our subroutine depending on what business process it has been invoked
from. Additionally, as both our subroutine and our superroutine reference the same assignment if the assignment
scope changes it will change for both routines.
BPM Assignment Data Model

Training:Architecture:Business Process Training Worksheets:Subroutines 63

On creating an external assignment for a business routine a new business_routine_assignment is created and
associated with our business_routine_context. The business_assignment it is associated with is the same assignment
record from our superroutine. This means we use the same delegation and will have the same assignment scope as
our superroutine. All we need to define our external assignment then is the name of our assignment as shown below:
External Assignment BPD Markup

<EXTERNAL_ASSIGNMENT_LIST>

 <EXTERNAL_ASSIGNMENT>

 <ASSIGNMENT>MY_EXTERNAL_ASSIGNMENT</ASSIGNMENT>

 <ASSIGNMENT_TITLE>My first external assignment</ASSIGNMENT_TITLE>

 </EXTERNAL_ASSIGNMENT>

</EXTERNAL_ASSIGNMENT_LIST>

Invoking a Subroutine
We can define markup against a stage in our business process definition to invoke one or more subroutines. The
subroutine will be created on entering the business stage. We also specify any assignments defined in our
superroutine that we want to pass into our subroutine.
Subroutine BPD Markup

<STAGE>

 <STAGE_LABEL>MY_SUPERROUTINE_STAGE</STAGE_LABEL>

 <STAGE_TITLE>My Superroutine Stage</STAGE_TITLE>

 <ACTION_SET_LIST>

 ...

 </ACTION_SET_LIST>

 <SUBROUTINE_LIST>

 <SUBROUTINE>

 <SUBROUTINE_SHORT_NAME>MY_SUBROUTINE_BPD_NAME</SUBROUTINE_SHORT_NAME>

 <SUBROUTINE_ASSIGNMENT_LIST>

 <SUBROUTINE_ASSIGNMENT>

 <ASSIGNMENT>SUPERROUTINE_ASSIGNMENT_NAME</ASSIGNMENT>

 <INTERNAL_ASSIGNMENT>SUBROUTINE_EXTERNAL_ASSIGNMENT_NAME</INTERNAL_ASSIGNMENT>

 </SUBROUTINE_ASSIGNMENT>

 </SUBROUTINE_ASSIGNMENT_LIST>

 <SUBROUTINE_BLOCKED_TRANSITION>

 <PRIORITY>1</PRIORITY>

 <MESSAGE>You cannot do this because</MESSAGE>

 <ACTION_SOURCE_CODE>

 <call action="action-do-something"/>

 </ACTION_SOURCE_CODE>

 </SUBROUTINE_BLOCKED_TRANSITION>

 </SUBROUTINE>

 </SUBROUTINE_LIST>

http://wiki.fivium.co.uk/mediawiki/index.php?title=File:Img_bpm_assignment_schema.png

Training:Architecture:Business Process Training Worksheets:Subroutines 64

</STAGE>

A subroutine will hold a reference to the business stage that created it as shown in the data model diagram below.
BPM Stage Subroutine Data Model

Before the business stage can be ended (i.e. by a transition to another stage) all of its subroutines must be complete.
For a subroutine to be complete this generally means that all of its stages must be ended. You can also define stages
in your subroutine as having a status of INACTIVE (see the Standard Stages worksheet for details on stage status). If
an incomplete subroutine has only INACTIVE stages then when attempting to end its superroutine stage an
END_SIGNAL will be sent to the subroutine's stages. As long as all INACTIVE stages define a transition that is
invoked by END_SIGNAL that ends the INACTIVE stage by going to an exit stage or orphan stage (explained later in
the training) the subroutine will complete and the superroutine stage can be ended.
If a subroutine is not complete or it is not possible to subsequently complete it when trying to end the superroutine
business stage then the transition in the superroutine will fail. You can define a message to display to the user if this
occurs and optionally supply some action code to run. This is done using the
SUBROUTINE_BLOCKED_TRANSITION element shown in the XML markup above. The priority is used to
determine which message and action code to run if multiple incomplete subroutines are found.

Subroutine Feedback
On entering an exit stage in a subroutine you can have it update the status of the stage in its superroutine that
invoked it. You can use this new status to automatically invoke a transition in the superroutine. This is commonly
used to move the superroutine on when the subroutine is complete. You can use different statuses to provide
different feedback as required to invoke different transitions. For example you may update the status to ABORTED if
the subroutine was cancelled and COMPLETE if the subroutine was completed. Each of these statuses may result in
a different transition being fired by the superroutine.
Subroutine Feedback BPD Markup

<EXIT_STAGE_LIST>

 <STAGE>

 <STAGE_LABEL>STAGE998</STAGE_LABEL>

 <STAGE_TITLE>End (Aborted)</STAGE_TITLE>

 <FINAL_SUPER_ROUTINE_STATUS>ABORTED</FINAL_SUPER_ROUTINE_STATUS>

 </STAGE>

 <STAGE>

 <STAGE_LABEL>STAGE999</STAGE_LABEL>

 <STAGE_TITLE>End (Complete)</STAGE_TITLE>

 <FINAL_SUPER_ROUTINE_STATUS>COMPLETE</FINAL_SUPER_ROUTINE_STATUS>

 </STAGE>

http://wiki.fivium.co.uk/mediawiki/index.php?title=File:Img_bpm_stages_subroutine.png
http://wiki.fivium.co.uk/mediawiki/index.php?title=Training:Architecture:Business_Process_Training_Worksheets:Standard_Stages%23Concepts

Training:Architecture:Business Process Training Worksheets:Subroutines 65

</EXIT_STAGE_LIST>

Invoking Superroutine Transition BPD Markup

<TRANSITION>

 <TRANSITION_LABEL>STAGE20a</TRANSITION_LABEL>

 <MOVE>

 <BEFORE>

 <STAGE_LABEL>STAGE20</STAGE_LABEL>

 <AUTO_INVOKE_FOR>

 <STAGE_STATUS>COMPLETE</STAGE_STATUS>

 </AUTO_INVOKE_FOR>

 </BEFORE>

 <AFTER>

 <STAGE_LABEL>STAGE30</STAGE_LABEL>

 </AFTER>

 </MOVE>

</TRANSITION>

<TRANSITION>

 <TRANSITION_LABEL>STAGE20b</TRANSITION_LABEL>

 <MOVE>

 <BEFORE>

 <STAGE_LABEL>STAGE20</STAGE_LABEL>

 <AUTO_INVOKE_FOR>

 <STAGE_STATUS>ABORTED</STAGE_STATUS>

 </AUTO_INVOKE_FOR>

 </BEFORE>

 <AFTER>

 <STAGE_LABEL>STAGE10</STAGE_LABEL>

 </AFTER>

 </MOVE>

</TRANSITION>

Workflow Markup
Subroutine Without Feedback

Subroutine With Feedback

http://wiki.fivium.co.uk/mediawiki/index.php?title=File:Img_subroutine_markup.png

Training:Architecture:Business Process Training Worksheets:Subroutines 66

Exercises

Create Subroutine
Create a new BPD named XX_REVIEW_SUBROUTINE (replacing XX with you initials) with the following
properties:
1. Has an external assignment called REVIEW_COORDINATOR.
2. Has entry stage PLNAPPRVW1, single standard stage PLNAPPRVW2, and single exit stage PLNAPPRVW999.
3. The entry stage should transition to the standard stage.
4. The standard stage should have a single action with an assigned workbasket assignment for the

REVIEW_COORDINATOR assignment and prompt Assign Reviewer. The action should transition to the exit
stage.

5. The exit stage should update the superroutine status to COMPLETE.

Invoke Subroutine
Modify your Planning Application BPD to invoke your subroutine by:
1. Markup stage PLNAPP50 to invoke your new subroutine BPD.
2. Pass your case manager assignment into your subroutines external assignment.
3. Modify transition PLNAPP40a so that it moves to stage PLNAPP50.
4. Add an action to PLNAPP60 to run transition PLNAPP60c which will pass back from decision stage to the

review stage.
5. Add transition PLNAPP50a that is invoked when the stage status is set to COMPLETE.

http://wiki.fivium.co.uk/mediawiki/index.php?title=File:Img_subroutine_feedback_markup.png

Training:Architecture:Business Process Training Worksheets:Context Switches 67

Training:Architecture:Business Process Training
Worksheets:Context Switches

Introduction
The following section will show you how to create child contexts for a business process routine and discuss why
they are used.

Concepts
A business process stage is linked to your business routine through the business routine context.
BPM Context/Stage Data Model

When running a transition the business routine context is used in conjunction with the stage label to identify the
before stages that need to be ended. When creating the after stages in a transition they are by default linked to the
business routine context that raised the transition. You can override this behaviour by specifying a new context for
the after stage or stages to be linked to. This is required when you want to have more than one instance of the same
stage active for a given business routine in order to be able to continue to identify it uniquely. If you try to transition
to an after stage that already exists for your context then another stage will not be created, the existing stage will be
used. You will see a common scenario where this is applicable later in the training when looking at Parallel
Processing Patterns.

New Contexts
Workflow Markup

BPD Markup for New Context

<TRANSITION>

 <TRANSITION_LABEL>STAGE10a</TRANSITION_LABEL>

http://wiki.fivium.co.uk/mediawiki/index.php?title=File:Img_bpm_context_stages.png
http://wiki.fivium.co.uk/mediawiki/index.php?title=File:Img_new_context_markup.png

Training:Architecture:Business Process Training Worksheets:Context Switches 68

 <MOVE>

 <BEFORE>

 <STAGE_LABEL>STAGE10</STAGE_LABEL>

 </BEFORE>

 <CONTEXT_SET>

 <NEW_CONTEXT_LIST>

 <CONTEXT_NAME>MY_NEW_CONTEXT</CONTEXT_NAME>

 </NEW_CONTEXT_LIST>

 <IN_CONTEXT>

 <API_LIST>

 <QUERY_NAME>Update New Context</QUERY_NAME>

 </API_LIST>

 </IN_CONTEXT>

 <AFTER>

 <STAGE_LABEL>STAGE20</STAGE_LABEL>

 </AFTER>

 </CONTEXT_SET>

 </MOVE>

</TRANSITION>

When moving to a new context you must specify the name of the context and the after stage or stages that will be
created and linked to it. The name of the context can be either a static name (as shown) or dynamically generated by
defining a QUERY_NAME (referencing a query in your business process) or SQL element. You can also optionally
specify tasks to perform when the new context is created. These are similar to the tasks you perform
BEFORE|IN|AFTER your transition such as making assignments, running APIs and emailing users.

Updating Your New Context
By default the new context will have the same XML as its parent context other than for the context name element.
When the business process raises events, for example by clicking a workbasket action, this isn't a problem as the
business process is aware of which business routine context initiated the event. When raising events externally
however this presents a problem as we first need to try and identify the business routine context the event is running
for based off the event itself and the context information passed into the event. If the event matches more than one of
the business routine contexts found using the context xml provided you will receive an application error.
To get around this we can update our new context once it is created to make it unique. In the previous example we
are calling a query that will update the context XML for our new context. This query is shown below.
BPD Markup for Updating a Business Context

 <QUERY_DEFINITION>

 <QUERY_NAME>Update New Context</QUERY_NAME>

 <SQL>

DECLARE

 l_new_uref VARCHAR2(10) := xp.get(bpm.event_xml, '/*/MY_NEW_UREF')

BEGIN

 /* make context unique by adding new uref as secondary data */

 bpm.set_context_xml(xp.set_xml(bpm.context_xml, '/*/CONTEXT',

uctx.addContext(l_new_uref, 'SECONDARY_DATA',

Training:Architecture:Business Process Training Worksheets:Context Switches 69

 uctx.removeContext('SECONDARY_DATA', bpm.context_xml))));

END;

 </SQL>

 </QUERY_DEFINITION>

In the above query we have passed a new UREF in through the event_xml which we then use to make the context
unique by setting this UREF as the secondary data in our new context.

Parent Contexts
A new context will contain a reference back to its parent context. On finishing with a context you can move back to
its parent context by running a transition and selecting the parent context when creating the after stages.
Workflow Markup

BPD Markup

<TRANSITION>

 <TRANSITION_LABEL>STAGE10a</TRANSITION_LABEL>

 <MOVE>

 <BEFORE>

 <STAGE_LABEL>STAGE10</STAGE_LABEL>

 </BEFORE>

 <CONTEXT_SET>

 <SELECT_CONTEXT_LIST>

 <PARENT_CONTEXT/>

 </SELECT_CONTEXT_LIST>

 <AFTER>

 <STAGE_LABEL>STAGE20</STAGE_LABEL>

 </AFTER>

 </CONTEXT_SET>

 </MOVE>

</TRANSITION>

You will see an example of how this is used in the Parallel Processing Patterns worksheet.

http://wiki.fivium.co.uk/mediawiki/index.php?title=File:Img_parent_context_markup.png

Training:Architecture:Business Process Training Worksheets:Context Switches 70

Exercises
1. Add stage PLNAPPRVW3 to your business process.
2. Change the transition from PLNAPPRVW2 to move to PLNAPPRVW3 in a new context.
3. In the new context run an API that updates the secondary data of the context XML to a person UREF (PER) of a

person ID returned by the get_unassigned_reviewer(p_application_uref VARCHAR2) function in your package.
Note: to get your application UREF you can use the uctx function uctx.getRefID1 passing in your business
context which can be accessed using bpm.context_xml.

4. Add a single action with a prompt Provide Response which will to transition from PLNAPPRVW3 to
PLNAPPRVW999 selecting the parent context. For now assign the action to your REVIEW_COORDINATOR
assignment.

Training:Architecture:Business Process Training
Worksheets:Contextual Assignments

Introduction
The following section will introduce you to contextual assignments.

Concepts
Contextual assignments are used when an assignment should be scoped to the business routine context rather than
the entire business routine. Unlike process assignments and external assignments which are created at the point the
business routine is created, contextual assignments are created on demand. Once created a contextual assignment
will exist for the context it was created in and any of its child contexts.

Creating a Contextual Assignment
To create a contextual assignment you call the assignment.create_assignment function passing it the name of the
contextual assignment and the name of the delegation profile that it will use. You can also optionally pass in your
own assignment XML containing data that is in scope of the assignment and/or a varchar2 list of UREFs for the
assignment to be scoped to in the case of assignments that are automatically made on FIRST_CREATE or
FIRST_USE. You generally define the API creating the assignment in your business process in a query definition.
You can then call this query as one of the tasks performed when running a transition or creating a new context.
BPD Markup for Creating an Assignment

 <QUERY_DEFINITION>

 <QUERY_NAME>Create Assignment</QUERY_NAME>

 <SQL>

DECLARE

 l_bas_id NUMBER;

 l_assignment_xml XMLTYPE;

BEGIN

 /* add data to assignment xml */

Training:Architecture:Business Process Training Worksheets:Contextual Assignments 71

 SELECT

 XMLELEMENT("ASSIGNMENT"

 , XMLELEMENT("WUA_ID", bpm.wua_id)

)

 INTO l_assignment_xml

 FROM dual;

 l_bas_id := assignment.create_assignment(

 p_assignment => 'MY_CONTEXTUAL_ASSIGNMENT'

 , p_delegation => 'MY_CONTEXTUAL_ASSIGNMENT_DL'

 , p_assignment_xml => l_assignment_xml

);

END;

 </SQL>

 </QUERY_DEFINITION>

Contextual Assignment Delegations
As you pass the delegation profile to use into the create_assignment function you can define this parameter at
run-time and use different delegation profiles each time the assignment is created. A more common pattern though is
to use the same delegation profile which retrieves the valid UREFs for an assignement using a query. This query can
retrieve the valid assignments using data you place inside your assignment XML, business context, or event XML if
raising the event externally.
BPD Markup for Delegation Query Definition

 <QUERY_DEFINITION>

 <QUERY_NAME>Get Assignment Roles</QUERY_NAME>

 <SQL>

SELECT

 XMLTYPE(xmlelement("WORKBASKET"

 , xmlelement("SCOPE_UREF", rr.id)

).getclobval())

FROM decmgr.resource_roles rr

WHERE rr.id IN (

 SELECT rmc.rr_id

 FROM decmgr.resource_members_current rmc

 WHERE rmc.wua_id = xp.get_number(bpm.assignment_xml, '/*/WUA_ID')

)

 </SQL>

 </QUERY_DEFINITION>

In the above example we have defined a query definition that can be used by our assignment delegation to return the
resource roles associated with the WUA ID that we placed in our assignment XML.

Training:Architecture:Business Process Training Worksheets:Contextual Assignments 72

Other Functions
The assignment package contains some other functions that can be used to return information about an assignment or
to manipulate the assignment. Two of the more useful functions are remove_assignment and update_assignment.

Removing Assignments
You can use the assignment.remove_assignment function to remove the assignment matching the assignment name
that you pass in as a parameter. This can be done when the assignment is no longer required or before creating the
assignment to ensure it is removed if it already exists.

Conditionally Scoping Assignment
Often you might like to use a delegation for more than one scenario with a contextual assignment. For example at
times you may not want to have the assignment scoped and allow users to take ownership, hence you will need an
ASSIGNEE_WHEN_UNASSIGNED_LIST that NEVER makes an assignment automatically. At other times you may
know who you want to make the assignment to and want to make it right away. As the delegation profile is set to
never automatically make assignments this will not happen when the assignment is created. Instead you can use the
assignment.update_assignment function passing in your assignment and the assignment mode, which to make an
assignment should be set to ASSIGN.

Exercises
1. Create a new delegation profile with the following properties

1. Requires an assignment to be made at all times
2. Automatically makes assignment on first use
3. Does not use unassigned actions
4. Uses a query definition to control valid assignments (for now just provide a name we will define the query

later)
2. Create a contextual assignment named REVIEWER that uses your new delegation profile
3. Modify the API that updates your business context so that it also adds the person ID to the assignment XML and

calls assignment.create_assignment passing in your new contextual assignment, associated delegation profile and
the assignment XML you created.

4. Create the query definition that your delegation profile uses. This should return the WUA UREF (WUA) of the
person matching the person ID in your assignment XML in the correct format (the required format is shown in the
Assignments training worksheet).

5. Change your Provide Response action on PLNAPPRVW3 to use your REVIEWER assignment instead of the
REVIEW_COORDINATOR assignment.

http://wiki.fivium.co.uk/mediawiki/index.php?title=Training:Architecture:Business_Process_Training_Worksheets:Delegations_and_Process_Assignments%23Delegation_Profile.27s_Universal_References_.28UREFs.29

Training:Architecture:Business Process Training Worksheets:Delay Stages 73

Training:Architecture:Business Process Training
Worksheets:Delay Stages

Introduction
This section will introduce delay stages and what they are used for.

Concepts
At times in your workflow you may need to wait for an event to occur either in another part of your business process
or externally before proceeding. To do this we can move to a delay stage. This is a standard business process stage
except that it has no actions defined. The business process will remain in this stage until moved on as a result of
receiving a signal, an external event, or being one of the before stages in a transition invoked by another stage.
Workflow Markup

BPD Markup

<STAGE>

 <STAGE_LABEL>STAGE10</STAGE_LABEL>

 <STAGE_TITLE>Waiting for xxxxx</STAGE_TITLE>

</STAGE>

http://wiki.fivium.co.uk/mediawiki/index.php?title=File:Img_delay_stage_markup.png

Training:Architecture:Business Process Training Worksheets:Parallel Processing Pattern 74

Training:Architecture:Business Process Training
Worksheets:Parallel Processing Pattern

Introduction
This training sheet will show an example of how we can put together some of the different business process elements
we have learnt about so far to produce a pattern that can be used for parallel processing. The following example is
not the only way this can be done and in some business processes you may need to use a different variant of it, but it
should give you an idea of how you can use the different elements of a business process to provide this functionality.

Concepts
At times we may want to present the same set of stages to different users to work on independently of each other in a
single business routine. It should be possible for them to end and create stages without affecting other users working
on those stages. This is an example of parallel processing.
Used together child contexts and contextual assignments can be used to implement a parallel processing pattern
where we have several instances of the same business process stage being worked on by different users at the same
time. The example below shows you an example of how this can be implemented using a manager stage, decision
stage, delay stage, and a transition join.
Workflow Example for Parallel Processing

http://wiki.fivium.co.uk/mediawiki/index.php?title=File:Img_parallel_processing_example.png

Training:Architecture:Business Process Training Worksheets:Parallel Processing Pattern 75

Manager Stage
The Manager Stage is responsible for controlling the parallel workflow. It will have an action available to allow the
manager to start a new parallel flow. This is shown as transition STAGE10a on the example diagram. This transition
will create a new stage STAGE20 within a new context. It will also recreate the manager stage so that the manager
can retain access to add further parallel flows.
In our transition our new context should run an API to setup the new context and create our contextual assignment.
The Context Switches and Contextual Assignments training sheets showed you how to do this.

Parallel Stage
There could be many instances of the parallel stage active for the same business routine at any one time. Each
parallel stage will be linked to the business routine through a different business routine context. The business routine
context along with the stage label allows us to uniquely identify each stage. In our example we show only one
parallel stage but you can have any number of stages existing within the new context we created running in parallel
with other flows using different instances of the same stages. When stages are created and ended within our new
context this will have no impact on stages in other contexts.
Transition STAGE20a shows how we exit from our parallel flow. This transition will select the parent context and
create the after stage STAGE30 in our parent context. As there are no other active stages associated with our child
context this ends our parallel workflow.

Decision Stage and Delay Stage
On completing a parallel workflow the decision stage STAGE30 is used to check if there are any other parallel
workflows in progress. If there are we move to a delay stage where the workflow waits for the other parallel flows to
complete. On completing the other workflows will merge with the existing delay stage as it exists for the same
business routine context. The transition STAGE30a will only create the delay stage if it does not already exist for the
business routine context running the transition, hence it will only be created the first time the transition is run.
Once the final parallel workflow completes transition STAGE30b will be run. This uses a transition join which will
pull down the delay stage and the manager stage and join them together with the decision stage back into a single
path.

Exercises
1. Change transition PLNAPPRVW2a so that it also moves back onto stage PLNAPPRVW2a.
2. Add the delay stage PLNAPPRVW5 to your BPD.
3. Add the decision stage PLNAPPRVW4 to your BPD. This stage should have two cases defined below.

1. The first case should check the value returned by the
trainingmgr.xx_plan_app.count_assigned_reviewers(p_application_uref) function defined in your training
package. If this is greater than 0 you should follow transition PLNAPPRVW4a.

2. The second case should check the value returned by the
trainingmgr.xx_plan_app.count_assigned_reviewers(p_application_uref) function defined in your training
package. If this is equal to 0 then you should follow transition PLNAPPRVW4b.

4. Change transition PLNAPPRVW3a so that it now moves to after stage PLNAPPRVW4 in the parent context.

Training:Architecture:Business Process Training Worksheets:Abort Pattern 76

Training:Architecture:Business Process Training
Worksheets:Abort Pattern

Introduction
At times you may want to terminate the business process by ending all active stages. The following training sheet
will show you how you can do this.

Concepts
A common requirement is to allow a user to terminate a business routine regardless of what stages it is currently in.
For example an applicant may submit a request which has gone to be actioned which the applicant subsequently
decides to cancel as he no longer requires the information. This request could be in one of many stages so we need to
ensure that all of its active stages are ended in order to end the business routine and cancel the request.
In order to do this we provide an action to the user to cancel the routine. This action will raise a signal. Every stage
which the business process could be in will implement a transition to end the stage that will be invoked on receiving
the signal raised.
If you are aborting a subroutine the exit stage you move to can be a different exit stage from the exit stage entered
when your routine completes successfully. This allows you to provide different feedback to your superroutine to
inform it that the subroutine was aborted rather than completed should it need to take a different action. You need to
be careful how you update the super-routine status if there are multiple stages being ended as a result of a signal. The
reason for this is that if we are invoking a transition in the super-routine on its status being updated then after the
first update the stage may no longer exist if it has transitioned to a different stage. Subsequent attempts to update its
status will result in an application error. To get around this we can do one of two things:
1. Raise the signal in a BEFORE_TRANSITION block. This will prevent the super-routine from transitioning when

the other stages are ended as we have not ended the before stage invoking the signal. This will only work if the
status of the before stage is ACTIVE.

2. Have all transitions invoked by the signal move to an exit stage that does not update the super-routine status.
Only the transition invoking the signal will move to an exit stage updating the super-routine status. This will
ensure that the status is only updated once.

Abort Layer
To avoid cluttering your workflow you can mark your abort signals and stages as using the abort layer on your
workflow diagram. The layer for a shape can be changed using the Format Shape toolbar. The advantage of using a
special layer to on these shapes is that you can turn layers on and off in Visual Studio. This is done under the View
-> Layer Properties menu option. By turning off the abort layer it may make it easier to understand the more
important parts of a workflow diagram. Below is example markup for signal sends and receives marked up in the
abort layer.
Workflow Abort Layer Markup

Training:Architecture:Business Process Training Worksheets:Abort Pattern 77

Exercises
1. Add a second exit stage to your subroutine PLNAPPRVW998 which sets the superroutine status to ABORTED.
2. Add an action to PLNAPPRVW2 with a prompt Cancel Review that runs transition PLNAPPRVW2b and raises the

required signal. Provide a confirm dialog when the action is pressed.
3. Implement the transitions listening for your abort signal on stages PLNAPPRVW3 and PLNAPPRVW5. For now

on PLNAPPRVW3 just move to stage PLNAPPRVW998, ignore stage PLNAPPRVW6.
4. Change your Planning Application business process so that on the status of stage PLNAPP50 being updated to

ABORTED it will run transition PLNAPP50b.

Training:Architecture:Business Process Training
Worksheets:Orphan Stages

Introduction
This training sheet will explain orphan stages and how the are used in the business process.

Concepts
In general a routine has ended once all of its stages have ended. There may be times when you want a routine to end
while it still has one or more stages active. A common scenario for this is when you want a super-routine to continue
processing whilst still providing workbasket actions to one or more stages in its subroutine. As explained in the
Subroutines training sheet a super-routine stage cannot end until all active stages on its subroutine have ended.
To get around this problem we can transition to an orphan stage. On transitioning to an orphan stage a new orphan
business routine is created. The orphan routine is based on the same business process as its parent routine, however it
does not start at an entry stage rather it immediately creates the orphan stage you are transitioning to. This has to be
done in a new context as you cannot continue using the same business context from your parent routine. The orphan
routine will create new business routine assignments which will be associated with the same assignments as the
business context that created the orphan routine.
An orphan routine can be as simple or complicated as you like. Essentially it is like working in a new context except
this context will allow its parent to end while it is still active. To create an orphan routine you invoke a transition
with the after stage created in a new context. The new context is marked up with the ORPHAN attribute to show that
the new context and stage should be created in an orphan routine.
BPD Markup for Orphan Transition

<TRANSITION>

 <TRANSITION_LABEL>STAGE10a</TRANSITION_LABEL>

 <MOVE>

http://wiki.fivium.co.uk/mediawiki/index.php?title=File:Img_abort_markup.png

Training:Architecture:Business Process Training Worksheets:Orphan Stages 78

 <BEFORE>

 <STAGE_LABEL>STAGE10</STAGE_LABEL>

 </BEFORE>

 <CONTEXT_SET>

 <NEW_CONTEXT_LIST>

 <CONTEXT_NAME>MY_ORPHAN_CONTEXT</CONTEXT_NAME>

 </NEW_CONTEXT_LIST>

 <ORPHAN>true</ORPHAN>

 <AFTER>

 <STAGE_LABEL>STAGE20</STAGE_LABEL>

 </AFTER>

 </CONTEXT_SET>

 </MOVE>

</TRANSITION>

Workflow Markup for Orphan Transition

Exercises
1. Create stage PLNAPPRVW6. This stage should have a single action available to your REVIEWER assignment

labelled Clear which will run transition PLNAPPRVW6a.
2. Modify transition PLNAPPRVW3b so that it forks to stages PLNAPPRVW998 and PLNAPPRVW6. Stage

PLNAPPRVW6 should be created as an orphan stage.

http://wiki.fivium.co.uk/mediawiki/index.php?title=File:Img_orphan_context_markup.png

Training:Architecture:Business Process Training Worksheets:Conditional Action Sets 79

Training:Architecture:Business Process Training
Worksheets:Conditional Action Sets

Introduction
The following section will explain how to conditionally provide actions to users on a business process stage.

Concepts
Assignments control what actions sets are available to what workbaskets on a stage. At times though you may want
to provide an action set to a workbasket only if certain conditions have been met, otherwise the action set should not
be created. For each action set you can optionally provide a list of conditions that must be met in order for the action
set to be created on entering a stage.
The conditions you define on an action set can take any of QUERY_NAME|WHEN|AND|OR|NOT|NO elements as
defined in the Run API training sheet. On moving to a stage if an action set has any conditions attached to it these
will be evaluated. If they evaluate to true the action set will be created, if they evaluate to false the action set will not
be created.
BPD Markup for Conditional Action Sets

<ACTION_SET>

 <ACTION_SET_MNEM>i</ACTION_SET_MNEM>

 <CONDITION_LIST>

 <QUERY_NAME>Check My Condition</QUERY_NAME>

 </CONDITION_LIST>

 <WORKBASKET_ASSIGNMENT_LIST>

 ...

 </WORKBASKET_ASSIGNMENT_LIST>

 <ACTION_LIST>

 ..

 </ACTION_LIST>

</ACTION_SET>

Exercises
1. Currently we can keep trying to assign more reviewers on our manager stage. If there are no further reviewers to

accept these reviews this will result in an application error. To fix this add a condition to the assign reviewer
action so that it is only created if unassigned reviewers exist. You can use the function
trainingmgr.xx_plan_app.count_unassigned_reviewers(p_application_uref) to get the number of unassigned
reviewers (replacing xx with your initials).

Training:Architecture:Business Process Training Worksheets:Action Overlay 80

Training:Architecture:Business Process Training
Worksheets:Action Overlay

Introduction
This section will show you how you can add additional descriptive information to an action set.

Concepts
On defining a stage you can provide it with an ACTION_DESC_STAGE element. This is static text that will be
displayed in the workbasket against all action sets for the stage. You can define further static information for an
action set using the ACTION_DESC_ACTION element in the ACTION_DATA for an action set.
If you want to show additional dynamic information against an action set this can be done by providing a query that
returns this information and running the query in your action set. The query you run must return XML in the format
shown below:

SELECT

 XMLELEMENT("ROOT"

 , XMLELEMENT("ACTION_DESC_ACTION", 'Some more information')

)

FROM dual

Within your action set you use an ACTION_OVERLAY_LIST element to define the additional information to be
displayed. The information will be appended as a comma separated list to the existing action description. In the
workbasket actions are grouped by their action description. If you provide static or dynamic action descriptions
against an action set making its description different from other action sets then its actions will be displayed separate
from the other action sets actions.
BPD Markup for Action Overlay

<ACTION_SET>

 <ACTION_SET_MNEM>i</ACTION_SET_MNEM>

 <WORKBASKET_ASSIGNMENT_LIST>

 ...

 </WORKBASKET_ASSIGNMENT_LIST>

 <ACTION_LIST>

 ...

 </ACTION_LIST>

 <ACTION_DATA>

 ...

 </ACTION_DATA>

 <ACTION_OVERLAY_LIST>

 <QUERY_NAME>My Action Overlay Query</QUERY_NAME>

 </ACTION_OVERLAY_LIST>

</ACTION_SET>

You can either call a query defined in your query definitions as shown in the above example or you can define the
query directly inside an SQL element.

Training:Architecture:Business Process Training Worksheets:Action Overlay 81

Exercises
1. Add a query to your query definitions to retrieve action description XML showing how many reviews are

currently assigned and how many more reviewers are available. You can use the function
trainingmgr.xx_plan_app.review_manage_action_desc(p_application_id) to retrieve a string with this information
(replacing xx with your initials).

2. Add an action overlay to both your Cancel Review action on stage PLNAPPRVW2. The action overlay should use
your previously defined query.

3. View how your actions are set-out (you may need to churn the stage by assigning a reviewers or cancelling and
restarting the review). Notice how the Assign Reviewer action and Cancel Review action are shown against their
different action descriptions.

4. Add the same action overlay to the Assign Reviewer action. Churn the stage to view the difference in how the
actions are displayed.

Training:Architecture:Business Process Training
Worksheets:Refreshing Stage Actions

Introduction
The following training sheet will show you how to recreate the actions on a stage when that stage already exists.

Concepts
Excluding context changes there are three ways in which you can move to a new stage, each of which has different
results. We can move to a new stage that does not already exist, move from a stage to a different stage that already
exists, or move from a stage to that same stage again.

Moving to a New Stage
When moving to a new stage the stage is created and the stage's action sets are created as described in the Moving
Between Stages training sheet.

Moving to an Existing Stage
When moving from a stage to a different stage that already exists then the before stage will be ended as expected and
the after stage will not be changed in any way.

Moving Onto the Same Stage
When moving from a stage back onto the same stage again then the stage will not be ended and hence will not be
created again. What will happen though is that the action sets on the stage will be refreshed. This means that the
stage actions will be ended and recreated. This is useful for when you want to update the actions on a stage for
example in the case of conditional actions, changes to workbasket assignments, or dynamic action descriptions.
We have seen examples of this being used when we take ownership (see Taking Ownership training worksheet), and
when we recreate our manager stage after assigning a reviewer in transition PLNAPPRVW2a. In this instance the
condition is being evaluated each time controlling whether or not we see the Assign Reviewer action and the action
description is being updated.

http://wiki.fivium.co.uk/mediawiki/index.php?title=Training:Architecture:Business_Process_Training_Worksheets:Transitions%23Transition_Basics
http://wiki.fivium.co.uk/mediawiki/index.php?title=Training:Architecture:Business_Process_Training_Worksheets:Transitions%23Transition_Basics
http://wiki.fivium.co.uk/mediawiki/index.php?title=Training:Architecture:Business_Process_Training_Worksheets:Make_Assignment%23Taking_Ownership

Training:Architecture:Business Process Training Worksheets:Refreshing Stage Actions 82

Exercises
In our review we want the manager to be able to assign a review again to a reviewer who has completed a review. In
order to do this we need to update the action sets on the manager stage when a review is complete.
1. Change transition PLNAPPRVW4a so that it raises the signal CHURN_PNAPPRVW2.
2. Add transition PLNAPPRWV2c that will be invoked on receiving your CHURN_PNAPPRVW2 signal.

Training:Architecture:Business Process Training
Worksheets:On Stage Tasks

Introduction
This section will introduce how you can carry out a set of tasks each time a stage is created.

Concepts
As part of the markup for a stage you can specify certain tasks to perform when a stage is created. These tasks are
similar to what you can do in a transition. The advantage of marking them up on the stage rather than the transition
to a stage is that you may enter a stage from many different transitions. If every time the stage is created you need to
perform the same tasks you can reduce code duplication by marking up the tasks to perform on the stage itself rather
than on all the transitions into it.
BPD Markup for Stage Tasks

<STAGE>

 <STAGE_LABEL>STAGE10</STAGE_LABEL>

 <STAGE_TITLE>Sample Stage Tasks</STAGE_TITLE>

 <ON_STAGE>

 <API_LIST>

 <QUERY_NAME>Do Stuff</QUERY_NAME>

 </API_LIST>

 </ON_STAGE>

 <ACTION_LIST>

 ...

 </ACTION_LIST>

</STAGE>

Note: Any tasks specified in the ON_STAGE element will be run everytime the stage is created. Ensure that this is
the behaviour you require. If transitioning from the stage back onto itself the ON_STAGE tasks will NOT be run as
the stage already existed.

Training:Architecture:Business Process Training Worksheets:Using Process XML Packages 83

Training:Architecture:Business Process Training
Worksheets:Using Process XML Packages

Introduction
This section will show you how to easily use the functions defined in your process XML package.

Concepts
We have seen how we can provide functions scoped to our UREF in the Process XML training worksheet. We have
also seen a few examples of how the business process makes use of this by providing information in the workbasket,
header information for your modules, and subject text for emails. You can also put any of your own functions in
your process XML package and access them easily through the bpmmgr.uref package without the need to write
dynamic SQL.
The bpmmgr.uref package provides three useful functions for accessing the correct process XML package for a given
function. These are getProcessedXML, getProcessedNumber, and getProcessedString which return XML, a number,
and a string respectively. You must provide the function with your UREF and the name of the function you want to
call. You may also optionally provide XML with additional parameters.

l_result_id := bpmmgr.uref.getProcessedNumber(

 p_Uref => l_my_uref

, p_Result_Type => 'RETURN_MY_NUMBER'

);

To be supported by the functions in the UREF package the function you define in your process XML package must
accept the ID of the case it is handling and XML parameters even if it does not use them. Below is a sample
specification of a function that can be used with getProcessedNumber.

FUNCTION return_my_number (

 p_key IN VARCHAR2

, p_xml_params IN XMLTYPE DEFAULT NULL

) RETURN NUMBER;

Exercises
In our review process we have several calls to the trainingmgr.xx_plan_app package. The ties our subroutine to our
Planning Application rather than it being generic as planned. To get around this problem we need to move these
functions to our process XML package. This will allow us to use our generic review process with any application so
long as it defines the required functions in its process XML package.
1. Move the get_unassigned_reviewer, count_assigned_reviewers, count_unassigned_reviewers, and

review_manage_action_desc functions to your process XML package. Note that you will need to change them
slightly so that they accept an ID rather than a UREF (ensure you change the body as well) and they need an
additional parameter for the XML parameter.

2. Alter your review business process so that it makes use of the functions provided in your process XML package
by calling the appropriate UREF function.

	Training:Architecture:Business Process Training Worksheets
	Business Process Training Worksheets
	Introduction
	Workflow Diagrams
	General Concepts
	Advanced Concepts

	Training:Architecture:Business Process Training Worksheets:Overview
	Overview
	BPD Core Elements

	Training:Architecture:Business Process Training Worksheets:Setting Up
	Setting Up
	If You Haven't Completed The Fox Training
	UREF and Team Creation
	Planning Application Package
	Login Links
	Business Process Definition

	Training:Architecture:Business Process Training Worksheets:Useful Queries
	Business Process Queries
	Current Stage and Assignments
	Transition, Event and Stage History
	Call Event and Rest Actions

	Training:Architecture:Business Process Training Worksheets:Workflow Diagrams
	Workflow Diagrams
	Sample Workflow Diagram
	Standards

	Training:Architecture:Business Process Training Worksheets:Plan App Workflow Diagram
	Planning Application Business Process Diagram
	Training:Architecture:Business Process Training Worksheets:BPM Package
	Overview
	Training:Architecture:Business Process Training Worksheets:Workbaskets
	Introduction
	Concepts
	Training:Architecture:Business Process Training Worksheets:Business Context
	Introduction
	Concepts
	Using the Business Context

	Training:Architecture:Business Process Training Worksheets:Delegations and Process Assignments
	Introduction
	Concepts
	Automatically Making Assignments
	Delegation Types
	Delegation Profile's Universal References (UREFs)
	Note on contextual teams

	Assignments and Concurrent Access
	BPD Markup

	Exercises
	Exercise 1
	Exercise 2

	Training:Architecture:Business Process Training Worksheets:Business Stages
	Overview
	Training:Architecture:Business Process Training Worksheets:Entry Stages
	Introduction
	Concepts
	Exercises
	Training:Architecture:Business Process Training Worksheets:Exit Stages
	Introduction
	Concepts
	Exercises
	Training:Architecture:Business Process Training Worksheets:Standard Stages
	Introduction
	Concepts
	Workflow Markup
	BPD Markup

	Exercises
	Training:Architecture:Business Process Training Worksheets:Transitions
	Introduction
	Concepts
	Transition Basics
	Transition Forks
	Transition Joins
	Self Transitions

	Exercises
	Training:Architecture:Business Process Training Worksheets:Workbasket Actions
	Introduction
	Concepts
	Action Sets
	Workbasket Assignments

	Actions
	Action Source Code
	Transition Label
	After Transition Source Code

	BPD Markup

	Exercises
	Entering Your Module
	Unassigned Workbasket Action
	Using Transitions
	Using Action Source Code

	Training:Architecture:Business Process Training Worksheets:Action Data
	Introduction
	Concepts
	Confirm Dialogs
	BPD Markup

	Background workbaskets
	BPD Markup

	Action Descriptions
	BPD Markup

	Pause Panels

	Exercises
	Add Action Confirms
	Set the Action Category
	Add Extra Description

	Training:Architecture:Business Process Training Worksheets:Panel Actions
	Introduction
	Concepts
	Including Panel Actions In Your Module

	Exercises
	Training:Architecture:Business Process Training Worksheets:Make Assignment
	Introduction
	Concepts
	Moving To A New Stage
	BPD Markup

	Taking Ownership
	BPD Markup

	Reassigning
	BPD markup

	Exercises
	Assignment When Moving Between Stages
	Taking Ownership
	Reassigning

	Training:Architecture:Business Process Training Worksheets:Run API
	Introduction
	Concepts
	Query Definition List
	Running an API in Transition

	Exercises
	Create Query Definitions
	Use Query Definitions in Transitions

	Training:Architecture:Business Process Training Worksheets:LHS Workbasket Actions
	Introduction
	Concepts
	Static Events
	Operations
	Actions

	Exercises
	Training:Architecture:Business Process Training Worksheets:Starting Business Process
	Introduction
	Concepts
	Starting the Routine
	Operation
	Panel Actions

	Exercises
	Training:Architecture:Business Process Training Worksheets:External Events
	Introduction
	External Transitions
	Use in Debugging

	Training:Architecture:Business Process Training Worksheets:Putting Into Practice
	Introduction
	Exercises
	PLNAPP10
	PLNAPP20
	PLNAPP40
	PLNAPP50

	Training:Architecture:Business Process Training Worksheets:Conditional Stages
	Introduction
	Concepts
	Workflow Markup
	BPD Markup

	Exercises
	Training:Architecture:Business Process Training Worksheets:Sync Stages
	Introduction
	Concepts
	Tidying The Workflow Diagram
	Dealing With Transition Forks and Joins
	Provide Common Tasks
	Workflow Markup
	BPD Markup

	Exercises
	Training:Architecture:Business Process Training Worksheets:Process XML
	Introduction
	Concepts
	Worked Example
	Using It In The Business Process
	Workbasket
	Context Header

	Exercises
	Workbasket Data
	Context Header

	Training:Architecture:Business Process Training Worksheets:Signals
	Introduction
	Concepts
	BPD Markup
	Workflow Markup

	Exercises
	Training:Architecture:Business Process Training Worksheets:Emails
	Introduction
	Concepts
	BPD Markup
	Email recipients
	Email Subject
	Email body
	DEV Emails

	Exercises
	Add Emails to BPD
	Provide Custom Subject

	Training:Architecture:Business Process Training Worksheets:Subroutines
	Introduction
	Concepts
	Scenario
	External Assignments
	Invoking a Subroutine
	Subroutine Feedback
	Workflow Markup

	Exercises
	Create Subroutine
	Invoke Subroutine

	Training:Architecture:Business Process Training Worksheets:Context Switches
	Introduction
	Concepts
	New Contexts
	Updating Your New Context
	Parent Contexts

	Exercises
	Training:Architecture:Business Process Training Worksheets:Contextual Assignments
	Introduction
	Concepts
	Creating a Contextual Assignment
	Contextual Assignment Delegations
	Other Functions
	Removing Assignments
	Conditionally Scoping Assignment

	Exercises
	Training:Architecture:Business Process Training Worksheets:Delay Stages
	Introduction
	Concepts
	Training:Architecture:Business Process Training Worksheets:Parallel Processing Pattern
	Introduction
	Concepts
	Manager Stage
	Parallel Stage
	Decision Stage and Delay Stage

	Exercises
	Training:Architecture:Business Process Training Worksheets:Abort Pattern
	Introduction
	Concepts
	Abort Layer

	Exercises
	Training:Architecture:Business Process Training Worksheets:Orphan Stages
	Introduction
	Concepts
	Exercises
	Training:Architecture:Business Process Training Worksheets:Conditional Action Sets
	Introduction
	Concepts
	Exercises
	Training:Architecture:Business Process Training Worksheets:Action Overlay
	Introduction
	Concepts
	Exercises
	Training:Architecture:Business Process Training Worksheets:Refreshing Stage Actions
	Introduction
	Concepts
	Moving to a New Stage
	Moving to an Existing Stage
	Moving Onto the Same Stage

	Exercises
	Training:Architecture:Business Process Training Worksheets:On Stage Tasks
	Introduction
	Concepts
	Training:Architecture:Business Process Training Worksheets:Using Process XML Packages
	Introduction
	Concepts
	Exercises

